Schober Torsten, Präger Achim, Hartung Jens, Graeff-Hönninger Simone
Agronomy, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
Biostatistics, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
PLoS One. 2024 Dec 30;19(12):e0315951. doi: 10.1371/journal.pone.0315951. eCollection 2024.
Empirical data on the effect of plant density (PD) and length of the vegetative phase (DVP) on plant growth, yield, and cannabinoid concentration of medicinal cannabis (Cannabis sativa L.) are still scarce, leading to a lack of specific cultivation recommendations. We conducted two greenhouse experiments to investigate the effect of PD in the range of 12-36 plants m-2 (D-trial) and DVP in the range of 1-4 weeks (V-trial) on plant morphology, biomass growth of individual plant organs, and CBD concentration of individual inflorescence fractions. Empirical models for the relationships between the investigated plant traits and PD/DVP were created using linear regression analysis preceded by a lack-of-fit test. An increase in PD led to a linear decrease in inflorescence yield per plant (p = 0.02), whereas a positive linear relationship was found for inflorescence yield (p = 0.0001) and CBD yield (p = 0.0002) per m2. Total area yields in the D-trial ranged from 119 to 247 g m-2 from lowest to highest PD. DVP showed a positive linear relationship with inflorescence yield on an individual plant (p = 0.0001) and area basis (p < 0.0001) along with most other relevant agronomic traits such as CBD production, plant size and lateral shoot length. Total area yields in the V-trial ranged from 295 to 571 g m-2 from lowest to highest DVP. The yield increase could be linked to the increased inflorescence number per plant rather than inflorescence size. In contrast to expectations, neither PD nor DVP had significant effects on the cannabinoid concentration gradient from upper to lower canopy layers. CBD concentrations in inflorescences from lower canopy layers were reduced by 23% in the V-trial and 46% in the D-trial. However, with increasing PD, the proportion of higher-concentrated inflorescence fractions from upper canopy layers increased from 46% to 68%, while an extension of DVP shifted this proportion only marginally from 45% to 50%. In the context of standardized production, we therefore advocate high-density production systems that increase the proportion of desired inflorescence fractions from upper canopy layers.
关于种植密度(PD)和营养生长期长度(DVP)对药用大麻(Cannabis sativa L.)的植株生长、产量和大麻素浓度影响的实证数据仍然匮乏,导致缺乏具体的种植建议。我们进行了两项温室试验,以研究12 - 36株/m²范围内的种植密度(D试验)和1 - 4周范围内的营养生长期长度(V试验)对植株形态、单株植物器官的生物量增长以及单个花序部分的CBD浓度的影响。在进行失拟检验后,使用线性回归分析建立了所研究的植物性状与种植密度/营养生长期长度之间关系的实证模型。种植密度增加导致单株花序产量呈线性下降(p = 0.02),而每平方米的花序产量(p = 0.0001)和CBD产量(p = 0.0002)呈正线性关系。在D试验中,从最低到最高种植密度,单位面积总产量范围为119至247 g/m²。营养生长期长度在单株(p = 0.0001)和单位面积基础上(p < 0.0001)与花序产量以及大多数其他相关农艺性状(如CBD产量、植株大小和侧枝长度)呈正线性关系。在V试验中,从最低到最高营养生长期长度,单位面积总产量范围为295至571 g/m²。产量增加可能与单株花序数量增加而非花序大小有关。与预期相反,种植密度和营养生长期长度对从上到下冠层的大麻素浓度梯度均无显著影响。在V试验中,下冠层花序中的CBD浓度降低了23%,在D试验中降低了46%。然而,随着种植密度增加,上冠层中高浓度花序部分的比例从46%增加到68%,而延长营养生长期长度仅使该比例从45%略微变化到50%。因此,在标准化生产的背景下,我们提倡采用高密度生产系统,以增加上冠层中所需花序部分的比例。