Suppr超能文献

两种基序增强了人类对长序列的记忆和泛化能力。

Two types of motifs enhance human recall and generalization of long sequences.

作者信息

Wu Shuchen, Thalmann Mirko, Schulz Eric

机构信息

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

Helmholtz Institute for Human-Centered AI, Münich, Germany.

出版信息

Commun Psychol. 2025 Jan 7;3(1):3. doi: 10.1038/s44271-024-00180-8.

Abstract

Whether it is listening to a piece of music, learning a new language, or solving a mathematical equation, people often acquire abstract notions in the sense of motifs and variables-manifested in musical themes, grammatical categories, or mathematical symbols. How do we create abstract representations of sequences? Are these abstract representations useful for memory recall? In addition to learning transition probabilities, chunking, and tracking ordinal positions, we propose that humans also use abstractions to arrive at efficient representations of sequences. We propose and study two abstraction categories: projectional motifs and variable motifs. Projectional motifs find a common theme underlying distinct sequence instances. Variable motifs contain symbols representing sequence entities that can change. In two sequence recall experiments, we train participants to remember sequences with projectional and variable motifs, respectively, and examine whether motif training benefits the recall of novel sequences sharing the same motif. Our result suggests that training projectional and variables motifs improve transfer recall accuracy, relative to control groups. We show that a model that chunks sequences in an abstract motif space may learn and transfer more efficiently, compared to models that learn chunks or associations on a superficial level. Our study suggests that humans construct efficient sequential memory representations according to the two types of abstraction we propose, and creating these abstractions benefits learning and out-of-distribution generalization. Our study paves the way for a deeper understanding of human abstraction learning and generalization.

摘要

无论是听一段音乐、学习一门新语言还是解一道数学方程,人们通常都会获得主题和变量意义上的抽象概念——这些概念体现在音乐主题、语法类别或数学符号中。我们如何创建序列的抽象表示?这些抽象表示对记忆回忆有用吗?除了学习转移概率、组块和跟踪顺序位置之外,我们提出人类还会使用抽象来形成序列的有效表示。我们提出并研究了两种抽象类别:投影主题和可变主题。投影主题在不同的序列实例中找到一个共同的主题。可变主题包含代表可以变化的序列实体的符号。在两个序列回忆实验中,我们分别训练参与者记住具有投影主题和可变主题的序列,并检查主题训练是否有助于回忆共享相同主题的新序列。我们的结果表明,相对于对照组,训练投影主题和可变主题可以提高转移回忆的准确性。我们表明,与在表面层面学习组块或关联的模型相比,在抽象主题空间中对序列进行组块的模型可能学习和转移得更有效。我们的研究表明,人类根据我们提出的两种抽象类型构建有效的序列记忆表示,创建这些抽象有助于学习和分布外泛化。我们的研究为更深入地理解人类抽象学习和泛化铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcd/11707037/fb3de74f632c/44271_2024_180_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验