Suppr超能文献

一种用于二进制序列的记忆理论:人类心理压缩算法的证据。

A theory of memory for binary sequences: Evidence for a mental compression algorithm in humans.

机构信息

Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France.

Université de Paris, Paris, France.

出版信息

PLoS Comput Biol. 2021 Jan 19;17(1):e1008598. doi: 10.1371/journal.pcbi.1008598. eCollection 2021 Jan.

Abstract

Working memory capacity can be improved by recoding the memorized information in a condensed form. Here, we tested the theory that human adults encode binary sequences of stimuli in memory using an abstract internal language and a recursive compression algorithm. The theory predicts that the psychological complexity of a given sequence should be proportional to the length of its shortest description in the proposed language, which can capture any nested pattern of repetitions and alternations using a limited number of instructions. Five experiments examine the capacity of the theory to predict human adults' memory for a variety of auditory and visual sequences. We probed memory using a sequence violation paradigm in which participants attempted to detect occasional violations in an otherwise fixed sequence. Both subjective complexity ratings and objective violation detection performance were well predicted by our theoretical measure of complexity, which simply reflects a weighted sum of the number of elementary instructions and digits in the shortest formula that captures the sequence in our language. While a simpler transition probability model, when tested as a single predictor in the statistical analyses, accounted for significant variance in the data, the goodness-of-fit with the data significantly improved when the language-based complexity measure was included in the statistical model, while the variance explained by the transition probability model largely decreased. Model comparison also showed that shortest description length in a recursive language provides a better fit than six alternative previously proposed models of sequence encoding. The data support the hypothesis that, beyond the extraction of statistical knowledge, human sequence coding relies on an internal compression using language-like nested structures.

摘要

工作记忆容量可以通过将记忆信息以压缩的形式重新编码来提高。在这里,我们测试了这样一种理论,即人类成年人在记忆中使用抽象的内部语言和递归压缩算法对二进制刺激序列进行编码。该理论预测,给定序列的心理复杂度应与其在提议语言中的最短描述长度成正比,该最短描述长度可以使用有限数量的指令捕获任何嵌套的重复和交替模式。五个实验检验了该理论预测人类成年人对各种听觉和视觉序列的记忆能力。我们使用序列违规范式来探测记忆,参与者试图在固定序列中偶尔检测到违规。主观复杂度评分和客观违规检测性能都很好地被我们的复杂度理论度量所预测,该度量简单地反映了在我们的语言中捕获序列的最短公式中基本指令和数字的加权和。虽然当作为统计分析中的单个预测因子进行测试时,更简单的转移概率模型可以解释数据中的显著差异,但当基于语言的复杂度度量被包含在统计模型中时,数据的拟合度显著提高,而转移概率模型解释的方差则大大降低。模型比较还表明,递归语言中的最短描述长度比以前提出的六种替代序列编码模型提供了更好的拟合。这些数据支持这样一种假设,即除了提取统计知识外,人类序列编码还依赖于使用类似语言的嵌套结构进行内部压缩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c27/7845997/a57235f9d0b1/pcbi.1008598.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验