用于验证性假设检验的随机效应结构:保持其最大化。
Random effects structure for confirmatory hypothesis testing: Keep it maximal.
作者信息
Barr Dale J, Levy Roger, Scheepers Christoph, Tily Harry J
机构信息
Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead St., Glasgow G12 8QB, United Kingdom.
Department of Linguistics, University of California at San Diego, La Jolla, CA 92093-0108, USA.
出版信息
J Mem Lang. 2013 Apr;68(3). doi: 10.1016/j.jml.2012.11.001.
Linear mixed-effects models (LMEMs) have become increasingly prominent in psycholinguistics and related areas. However, many researchers do not seem to appreciate how random effects structures affect the generalizability of an analysis. Here, we argue that researchers using LMEMs for confirmatory hypothesis testing should minimally adhere to the standards that have been in place for many decades. Through theoretical arguments and Monte Carlo simulation, we show that LMEMs generalize best when they include the maximal random effects structure . The generalization performance of LMEMs including random effects structures strongly depends upon modeling criteria and sample size, yielding reasonable results on moderately-sized samples when conservative criteria are used, but with little or no power advantage over maximal models. Finally, random-intercepts-only LMEMs used on within-subjects and/or within-items data from populations where subjects and/or items vary in their sensitivity to experimental manipulations always generalize worse than separate and tests, and in many cases, even worse than alone. Maximal LMEMs should be the 'gold standard' for confirmatory hypothesis testing in psycholinguistics and beyond.
线性混合效应模型(LMEMs)在心理语言学及相关领域中日益突出。然而,许多研究者似乎并不理解随机效应结构如何影响分析的可推广性。在此,我们认为使用LMEMs进行验证性假设检验的研究者应至少遵循已存在数十年的标准。通过理论论证和蒙特卡罗模拟,我们表明当LMEMs包含最大随机效应结构时,其可推广性最佳。包含随机效应结构的LMEMs的推广性能在很大程度上取决于建模标准和样本量,当使用保守标准时,在中等规模样本上能得出合理结果,但与最大模型相比几乎没有或没有功效优势。最后,在来自主体和/或项目对实验操纵敏感性存在差异的总体的主体内和/或项目内数据上使用仅含随机截距的LMEMs,其可推广性总是比单独的检验更差,并且在许多情况下,甚至比单独的检验更差。最大LMEMs应成为心理语言学及其他领域验证性假设检验的“黄金标准”。
相似文献
J Neurosci Methods. 2024-1-1
J Pharmacokinet Pharmacodyn. 2013-1-4
Cochrane Database Syst Rev. 2022-2-1
引用本文的文献
R Soc Open Sci. 2025-8-27
Nat Commun. 2025-8-22
Sci Rep. 2025-8-21
本文引用的文献
Perspect Psychol Sci. 2012-11
Cogn Psychol. 2010-8
Behav Ecol. 2009-3
Trends Ecol Evol. 2009-3
Behav Res Methods. 2007-11