Liu Song, Shi Liang, Xu Wei, Hu ZeChao
Naval University of Engineering, Wuhan, Hubei, China.
National Key Laboratory on Ship Vibration & Noise, Wuhan, China.
Sci Rep. 2025 Jan 7;15(1):1065. doi: 10.1038/s41598-025-85196-8.
Shafting alignment is crucial for marine propulsion systems and may affect the safety and stability of ship operations. Air spring vibration isolation systems (ASVISs) for marine shafting can help control the shafting alignment state by actively adjusting air spring pressures while effectively reducing the mechanical noise. However, how to accurately control the alignment state of marine shafting with air spring vibration isolation system remains a challenge. To address this issue, a digital twin (DT)-driven alignment control method is proposed in this paper. First, we design a digital twin prediction model based on the neural network to describe the data mapping relationship between the air spring pressures and shafting alignment state. Then, based on the prediction model, we transform the shafting alignment control problem into a non-linear optimization problem in which our objective is to minimize the alignment error while balancing the load on different air springs. To obtain the optimal air spring pressures, the genetic algorithm is introduced to solve the optimization problem, fully exploiting its global search capacity. Moreover, in order to achieve the optimized pressures, a soft-constrained controller based on proportional-integral-derivative (PID) algorithm is developed to accurately generate specific control policies based on the monitoring data. Finally, the feasibility and the effectiveness of the proposed alignment control method is verified with a real ASVIS.
轴系对中对于船舶推进系统至关重要,可能会影响船舶运行的安全性和稳定性。用于船舶轴系的空气弹簧隔振系统(ASVIS)可以通过主动调节空气弹簧压力来帮助控制轴系对中状态,同时有效降低机械噪声。然而,如何利用空气弹簧隔振系统精确控制船舶轴系的对中状态仍然是一个挑战。为了解决这个问题,本文提出了一种基于数字孪生(DT)驱动的对中控制方法。首先,我们设计了一个基于神经网络的数字孪生预测模型,以描述空气弹簧压力与轴系对中状态之间的数据映射关系。然后,基于该预测模型,我们将轴系对中控制问题转化为一个非线性优化问题,其目标是在平衡不同空气弹簧负载的同时最小化对中误差。为了获得最佳的空气弹簧压力,引入遗传算法来解决优化问题,充分利用其全局搜索能力。此外,为了实现优化压力,开发了一种基于比例积分微分(PID)算法的软约束控制器,以根据监测数据准确生成特定的控制策略。最后,通过实际的ASVIS验证了所提出的对中控制方法的可行性和有效性。