Suppr超能文献

帕克立克次氏体与糙面内质网形成广泛、稳定的接触。

Rickettsia parkeri forms extensive, stable contacts with the rough endoplasmic reticulum.

作者信息

Acevedo-Sánchez Yamilex, Woida Patrick J, Anderson Caroline, Kraemer Stephan, Lamason Rebecca L

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Microbiology Program, Massachusetts Institute of Technology , Cambridge, MA, USA.

出版信息

J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202406122. Epub 2025 Jan 7.

Abstract

Upon invasion into the host cell, a subset of bacterial pathogens resides exclusively in the cytosol. While previous research revealed how they reshape the plasma membrane during invasion, subvert the immune response, and hijack cytoskeletal dynamics to promote their motility, it was unclear if these pathogens also interacted with the organelles in this crowded intracellular space. Here, we examined if the obligate intracellular pathogen Rickettsia parkeri interacts with the endoplasmic reticulum (ER), a large and dynamic organelle spread throughout the cell. Using live-cell microscopy and transmission and focused-ion-beam scanning electron microscopy, we show that R. parkeri forms extensive contacts with the rough ER that are ∼55 nm apart and cover more than half the bacterial surface. Depletion of the ER-specific tethers VAPA and VAPB reduced rickettsia-ER contacts, and VAPA and VAPB were localized around intracellular rickettsiae. Overall, our findings illuminate an interkingdom ER contact uniquely mediated by rickettsiae that mimics some characteristics of traditional host membrane contact sites.

摘要

侵入宿主细胞后,一部分细菌病原体仅存在于细胞质溶胶中。虽然先前的研究揭示了它们在入侵过程中如何重塑质膜、颠覆免疫反应以及劫持细胞骨架动力学以促进其运动,但尚不清楚这些病原体是否也在这个拥挤的细胞内空间中与细胞器相互作用。在这里,我们研究了专性细胞内病原体帕克立克次体是否与内质网(ER)相互作用,内质网是一种遍布整个细胞的大型动态细胞器。使用活细胞显微镜、透射电子显微镜和聚焦离子束扫描电子显微镜,我们发现帕克立克次体与糙面内质网形成广泛接触,间距约为55纳米,覆盖细菌表面一半以上。内质网特异性连接蛋白VAPA和VAPB的耗竭减少了立克次体与内质网的接触,并且VAPA和VAPB定位于细胞内立克次体周围。总体而言,我们的研究结果揭示了一种由立克次体独特介导的跨界内质网接触,它模仿了传统宿主膜接触位点的一些特征。

相似文献

1
Rickettsia parkeri forms extensive, stable contacts with the rough endoplasmic reticulum.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202406122. Epub 2025 Jan 7.
2
An obligate intracellular bacterial pathogen forms a direct, interkingdom membrane contact site.
bioRxiv. 2023 Jun 6:2023.06.05.543771. doi: 10.1101/2023.06.05.543771.
4
Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway.
Cell Microbiol. 2012 Apr;14(4):529-45. doi: 10.1111/j.1462-5822.2011.01739.x. Epub 2012 Jan 16.
5
The actin-based motility effectors RickA and Sca2 contribute differently to cell-to-cell spread and pathogenicity.
mBio. 2025 Feb 5;16(2):e0256324. doi: 10.1128/mbio.02563-24. Epub 2025 Jan 17.
7
Rickettsia Sca4 Reduces Vinculin-Mediated Intercellular Tension to Promote Spread.
Cell. 2016 Oct 20;167(3):670-683.e10. doi: 10.1016/j.cell.2016.09.023.
8
The ER Contact Proteins VAPA/B Interact with Multiple Autophagy Proteins to Modulate Autophagosome Biogenesis.
Curr Biol. 2018 Apr 23;28(8):1234-1245.e4. doi: 10.1016/j.cub.2018.03.002. Epub 2018 Apr 5.
9
Experimental infection of cotton rats and bobwhite quail with Rickettsia parkeri.
Parasit Vectors. 2013 Mar 15;6:70. doi: 10.1186/1756-3305-6-70.
10
Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence.
Nat Microbiol. 2019 Dec;4(12):2538-2551. doi: 10.1038/s41564-019-0583-6. Epub 2019 Oct 14.

引用本文的文献

1
Cytosolic companionship: Rickettsia connects with the endoplasmic reticulum.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202412181. Epub 2025 Feb 11.

本文引用的文献

2
Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells.
Infect Immun. 2024 Sep 10;92(9):e0052423. doi: 10.1128/iai.00524-23. Epub 2024 Apr 25.
3
Pathogenic spp. as emerging models for bacterial biology.
J Bacteriol. 2024 Feb 22;206(2):e0040423. doi: 10.1128/jb.00404-23. Epub 2024 Feb 5.
4
Motion of VAPB molecules reveals ER-mitochondria contact site subdomains.
Nature. 2024 Feb;626(7997):169-176. doi: 10.1038/s41586-023-06956-y. Epub 2024 Jan 24.
5
Making the connection: How membrane contact sites have changed our view of organelle biology.
Cell. 2024 Jan 18;187(2):257-270. doi: 10.1016/j.cell.2023.11.040.
6
Membrane contact site detection (MCS-DETECT) reveals dual control of rough mitochondria-ER contacts.
J Cell Biol. 2024 Jan 1;223(1). doi: 10.1083/jcb.202206109. Epub 2023 Nov 10.
7
Organelles are miscommunicating: Membrane contact sites getting hijacked by pathogens.
Virulence. 2023 Dec;14(1):2265095. doi: 10.1080/21505594.2023.2265095. Epub 2023 Oct 20.
8
Pathogen vacuole membrane contact sites - close encounters of the fifth kind.
Microlife. 2023 Apr 7;4:uqad018. doi: 10.1093/femsml/uqad018. eCollection 2023.
9
Restructured membrane contacts rewire organelles for human cytomegalovirus infection.
Nat Commun. 2022 Aug 11;13(1):4720. doi: 10.1038/s41467-022-32488-6.
10
VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease.
Front Cell Dev Biol. 2022 Jun 8;10:895856. doi: 10.3389/fcell.2022.895856. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验