Almotiri Sultan H
Cybersecurity Department, College of Computers, Umm Al-Qura University, Makkah City, Kingdom of Saudi Arabia.
PLoS One. 2024 Dec 30;19(12):e0316274. doi: 10.1371/journal.pone.0316274. eCollection 2024.
The introduction of quantum computing has transformed the setting of information technology, bringing both unprecedented opportunities and significant challenges. As quantum technologies continue to evolve, addressing their implications for software security has become an essential area of research. This paradigm change provides an unprecedented chance to strengthen software security from the start, presenting a plethora of novel alternatives. We use a multi-criteria decision-making methodology in this work to evaluate the efficacy of quantum computing approaches in improving software security. As the number of electronic applications grows, software developers strive to produce more sophisticated and user-friendly alternatives. However, in the pursuit of complexity, vulnerabilities may be introduced inadvertently, posing a substantial danger to software security. Our study addresses five major components of the quantum method to overcome these challenges: lattice-based cryptography, fully homomorphic algorithms, quantum key distribution, quantum hash functions, and blind quantum algorithms. The rapid development of quantum bits (qubits) regarded as basic quantum entities adds complexity and risk to the software security landscape. As a result, in the age of quantum computing, evaluating software security becomes not only necessary but also critical. To accomplish this objective, we propose the Fuzzy Analytic Hierarchy Process (F-AHP), a soft computing method, as a reliable tool for accomplishing this goal. Our research aims to prioritise security variables using quantum security criteria, providing an innovative viewpoint on software security evaluation in the quantum computing era.
量子计算的引入改变了信息技术的格局,带来了前所未有的机遇和重大挑战。随着量子技术不断发展,应对其对软件安全的影响已成为一个重要的研究领域。这种范式转变提供了一个前所未有的机会,可从一开始就加强软件安全,带来了大量新颖的选择。在这项工作中,我们使用多标准决策方法来评估量子计算方法在提高软件安全方面的功效。随着电子应用数量的增加,软件开发人员努力开发更复杂、更用户友好的应用程序。然而,在追求复杂性的过程中,可能会无意中引入漏洞,对软件安全构成重大威胁。我们的研究针对量子方法的五个主要组成部分来克服这些挑战:基于格的密码学、全同态算法、量子密钥分发、量子哈希函数和盲量子算法。作为基本量子实体的量子比特(qubit)的快速发展给软件安全格局增添了复杂性和风险。因此,在量子计算时代,评估软件安全不仅变得必要,而且至关重要。为实现这一目标,我们提出模糊层次分析法(F-AHP),一种软计算方法,作为实现这一目标的可靠工具。我们的研究旨在使用量子安全标准对安全变量进行优先级排序,为量子计算时代的软件安全评估提供一个创新的视角。