Suppr超能文献

机器学习模型在检测本科生抑郁、焦虑和压力方面的表现如何?一项系统综述。

How do machine learning models perform in the detection of depression, anxiety, and stress among undergraduate students? A systematic review.

作者信息

Schaab Bruno Luis, Calvetti Prisla Ücker, Hoffmann Sofia, Diaz Gabriela Bertoletti, Rech Maurício, Cazella Sílvio César, Stein Airton Tetelbom, Barros Helena Maria Tannhauser, Silva Pamela Carvalho da, Reppold Caroline Tozzi

机构信息

Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brasil.

出版信息

Cad Saude Publica. 2024 Dec 20;40(11):e00029323. doi: 10.1590/0102-311XEN029323. eCollection 2024.

Abstract

Undergraduate students are often impacted by depression, anxiety, and stress. In this context, machine learning may support mental health assessment. Based on the following research question: "How do machine learning models perform in the detection of depression, anxiety, and stress among undergraduate students?", we aimed to evaluate the performance of these models. PubMed, Embase, PsycINFO, and Web of Science databases were searched, aiming at studies meeting the following criteria: publication in English; targeting undergraduate university students; empirical studies; having been published in a scientific journal; and predicting anxiety, depression, or stress outcomes via machine learning. The certainty of evidence was analyzed using the GRADE. As of January 2024, 2,304 articles were found, and 48 studies met the inclusion criteria. Different types of data were identified, including behavioral, physiological, internet usage, neurocerebral, blood markers, mixed data, as well as demographic and mobility data. Among the 33 studies that provided accuracy assessment, 30 reported values that exceeded 70%. Accuracy in detecting stress ranged from 63% to 100%, anxiety from 53.69% to 97.9%, and depression from 73.5% to 99.1%. Although most models present adequate performance, it should be noted that 47 of them only performed internal validation, which may overstate the performance data. Moreover, the GRADE checklist suggested that the quality of the evidence was very low. These findings indicate that machine learning algorithms hold promise in Public Health; however, it is crucial to scrutinize their practical applicability. Further studies should invest mainly in external validation of the machine learning models.

摘要

本科生经常受到抑郁、焦虑和压力的影响。在这种背景下,机器学习可能有助于心理健康评估。基于以下研究问题:“机器学习模型在检测本科生的抑郁、焦虑和压力方面表现如何?”,我们旨在评估这些模型的性能。我们检索了PubMed、Embase、PsycINFO和科学网数据库,目标是寻找符合以下标准的研究:英文发表;针对本科大学生;实证研究;发表在科学期刊上;以及通过机器学习预测焦虑、抑郁或压力结果。使用GRADE分析证据的确定性。截至2024年1月,共找到2304篇文章,48项研究符合纳入标准。识别出了不同类型的数据,包括行为数据、生理数据、互联网使用数据、神经脑数据、血液标志物数据、混合数据,以及人口统计学和移动性数据。在提供准确性评估的33项研究中,30项报告的值超过了70%。检测压力的准确率在63%至100%之间,焦虑的准确率在53.69%至97.9%之间,抑郁的准确率在73.5%至99.1%之间。虽然大多数模型表现出足够的性能,但应该注意的是,其中47项仅进行了内部验证,这可能会夸大性能数据。此外,GRADE清单表明证据质量非常低。这些发现表明机器学习算法在公共卫生领域有前景;然而,仔细审查它们的实际适用性至关重要。进一步的研究应主要投入于机器学习模型的外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0080/11654111/d14e0ef5f48b/1678-4464-csp-40-11-EN029323-gf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验