Suppr超能文献

预测机器学习模型评估 COVID-19 期间黎巴嫩大学生的抑郁、焦虑和压力。

Predictive Machine Learning Models for Assessing Lebanese University Students' Depression, Anxiety, and Stress During COVID-19.

机构信息

York University, Toronto, ON, Canada.

American University of Beirut, Beirut, Lebanon.

出版信息

J Prim Care Community Health. 2024 Jan-Dec;15:21501319241235588. doi: 10.1177/21501319241235588.

Abstract

University students are experiencing a mental health crisis. COVID-19 has exacerbated this situation. We have surveyed students in 2 universities in Lebanon to gauge their mental health challenges. We have constructed a machine learning (ML) approach to predict symptoms of depression, anxiety, and stress based on demographics and self-rated health measures. Our approach involved developing 8 ML predictive models, including Logistic Regression (LR), multi-layer perceptron (MLP) neural network, support vector machine (SVM), random forest (RF) and XGBoost, AdaBoost, Naïve Bayes (NB), and K-Nearest neighbors (KNN). Following their construction, we compared their respective performances. Our evaluation shows that RF (AUC = 78.27%), NB (AUC = 76.37%), and AdaBoost (AUC = 72.96%) have provided the highest-performing AUC scores for depression, anxiety, and stress, respectively. Self-rated health is found to be the top feature in predicting depression, while age was the top feature in predicting anxiety and stress, followed by self-rated health. Future work will focus on using data augmentation approaches and extending to multi-class anxiety predictions.

摘要

大学生正面临着一场心理健康危机。COVID-19 加剧了这种情况。我们调查了黎巴嫩的两所大学的学生,以了解他们的心理健康挑战。我们构建了一种机器学习 (ML) 方法,根据人口统计学和自我评估的健康指标来预测抑郁、焦虑和压力的症状。我们的方法包括开发 8 种 ML 预测模型,包括逻辑回归 (LR)、多层感知器 (MLP) 神经网络、支持向量机 (SVM)、随机森林 (RF) 和 XGBoost、AdaBoost、朴素贝叶斯 (NB) 和 K-最近邻 (KNN)。在构建之后,我们比较了它们各自的性能。我们的评估表明,RF(AUC=78.27%)、NB(AUC=76.37%)和 AdaBoost(AUC=72.96%)在预测抑郁、焦虑和压力方面分别提供了最高的 AUC 评分。自我评估的健康状况被发现是预测抑郁的最重要特征,而年龄是预测焦虑和压力的最重要特征,其次是自我评估的健康状况。未来的工作将集中在使用数据增强方法和扩展到多类焦虑预测上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/421b/10981228/7850180ffd11/10.1177_21501319241235588-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验