Landry Alexander P, Wang Justin Z, Liu Jeff, Patil Vikas, Gui Chloe, Patel Zeel, Ajisebutu Andrew, Ellenbogen Yosef, Wei Qingxia, Singh Olivia, Sosa Julio, Mansouri Sheila, Wilson Christopher, Cohen-Gadol Aaron A, Zaazoue Mohamed A, Tabatabai Ghazaleh, Tatagiba Marcos, Behling Felix, Barnholtz-Sloan Jill S, Sloan Andrew E, Chotai Silky, Chambless Lola B, Rebchuk Alexander D, Makarenko Serge, Yip Stephen, Mansouri Alireza, Tsang Derek S, Aldape Kenneth, Gao Andrew, Nassiri Farshad, Zadeh Gelareh
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
Neuro Oncol. 2025 Jun 21;27(5):1258-1269. doi: 10.1093/neuonc/noae242.
Meningiomas exhibit considerable clinical and biological heterogeneity. We previously identified 4 distinct molecular groups (immunogenic, NF2-wildtype, hypermetabolic, and proliferative) that address much of this heterogeneity. Despite the utility of these groups, the stochasticity of clustering methods and the use of multi-omics data for discovery limits the potential for classifying prospective cases. We sought to address this with a dedicated classifier.
Using an international cohort of 1698 meningiomas, we constructed and rigorously validated a machine learning-based molecular classifier using only DNA methylation data as input. Original and newly predicted molecular groups were compared using DNA methylation, RNA sequencing, copy number profiles, whole-exome sequencing, and clinical outcomes.
We show that group-specific outcomes in the validation cohort are nearly identical to those originally described, with median progression-free survival (PFS) of 7.4 (4.9-Inf) years in hypermetabolic tumors and 2.5 (2.3-5.3) years in proliferative tumors (not reached in the other groups). Tumors classified as NF2-wildtype had no NF2 mutations, and 51.4% had canonical mutations previously described in this group. RNA pathway analysis revealed upregulation of immune-related pathways in the immunogenic group, metabolic pathways in the hypermetabolic group, and cell cycle programs in the proliferative group. Bulk deconvolution similarly revealed the enrichment of macrophages in immunogenic tumors and neoplastic cells in hypermetabolic and proliferative tumors with similar proportions to those originally described.
Our DNA methylation-based classifier, which is publicly available for immediate clinical use, recapitulates the biology and outcomes of the original molecular groups as assessed using multiple metrics/platforms that were not used in its training.
脑膜瘤表现出显著的临床和生物学异质性。我们之前鉴定出4个不同的分子组(免疫原性组、NF2野生型组、高代谢组和增殖组),这些组解释了大部分这种异质性。尽管这些组具有实用性,但聚类方法的随机性以及使用多组学数据进行发现限制了对前瞻性病例进行分类的潜力。我们试图用一个专用分类器来解决这个问题。
我们使用1698例脑膜瘤的国际队列,构建并严格验证了一个仅以DNA甲基化数据作为输入的基于机器学习的分子分类器。使用DNA甲基化、RNA测序、拷贝数图谱、全外显子测序和临床结果对原始和新预测的分子组进行比较。
我们发现,验证队列中特定组的结果与最初描述的结果几乎相同,高代谢肿瘤的无进展生存期(PFS)中位数为7.4(4.9-无穷大)年,增殖性肿瘤为2.5(2.3-5.3)年(其他组未达到)。分类为NF2野生型的肿瘤没有NF2突变,51.4%具有该组先前描述的典型突变。RNA通路分析显示,免疫原性组中免疫相关通路上调,高代谢组中代谢通路上调,增殖组中细胞周期程序上调。批量解卷积同样显示,免疫原性肿瘤中巨噬细胞富集,高代谢和增殖性肿瘤中肿瘤细胞富集,比例与最初描述的相似。
我们基于DNA甲基化的分类器可公开用于即时临床应用,它概括了原始分子组的生物学特征和结果,这些特征和结果是使用其训练中未使用的多种指标/平台评估得出的。