Suppr超能文献

基于经直肠超声引导下灰阶活检的超声影像组学模型用于诊断前列腺癌及预测远处转移

Ultrasound radiomics model based on grayscale transrectal ultrasound-guided biopsy for diagnosing prostate cancer and predicting distant metastasis.

作者信息

Liu Jie, Xiang Zhendong, Yi Cheng, Yang Tianzi, Liu Dongting

机构信息

Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, No. 2 Jiefang Road, Xiling District, Yichang, Hubei, China.

Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, No. 2 Jiefang Road, Xiling District, Yichang, Hubei, China.

出版信息

Int Urol Nephrol. 2025 Jun;57(6):1797-1809. doi: 10.1007/s11255-025-04366-9. Epub 2025 Jan 8.

Abstract

OBJECTIVE

A prostate ultrasound (US) imaging omics model was established to assess its effectiveness in diagnosing prostate cancer (PCa), predicting Gleason score (GS), and determining the likelihood of distant metastasis.

METHODS

US images of patients with prostate pathology confirmed by biopsy or surgery at our hospital were retrospectively analyzed. Regions of interest (ROI) segmentation, feature extraction, feature screening, and the construction and training of the radiomics model were performed.

RESULTS

Area under the curve (AUC) for the magnetic resonance imaging Prostate Imaging Reporting and Data System (MRI PI-RADS) classification, radiomics alone, and radiomics combined with prostate-specific antigen (PSA) in diagnosing PCa were 70.74%, 71.13%, and 90.47%, respectively. AUCs for the MRI PI-RADS classification, radiomics alone, and radiomics combined with PSA in predicting the GS of PCa were 75.6%, 74.7%, and 88.9%, respectively. Furthermore, AUCs for MRI PI-RADS classification and radiomics alone in predicting distant metastasis of PCa were 66.7% and 90.8%, respectively.

CONCLUSION

The combination of ultrasonic imaging omics and serum PSA significantly improves the efficiency of PCa diagnosis, GS prediction, and distant metastasis prediction. This method is an important tool for PCa screening and follow-up.

摘要

目的

建立前列腺超声(US)成像组学模型,以评估其在诊断前列腺癌(PCa)、预测 Gleason 评分(GS)以及确定远处转移可能性方面的有效性。

方法

回顾性分析我院经活检或手术确诊前列腺病变患者的 US 图像。进行感兴趣区域(ROI)分割、特征提取、特征筛选以及放射组学模型的构建和训练。

结果

磁共振成像前列腺影像报告和数据系统(MRI PI-RADS)分类、单纯放射组学以及放射组学联合前列腺特异性抗原(PSA)诊断 PCa 的曲线下面积(AUC)分别为 70.74%、71.13%和 90.47%。MRI PI-RADS 分类、单纯放射组学以及放射组学联合 PSA 预测 PCa 的 GS 的 AUC 分别为 75.6%、74.7%和 88.9%。此外,MRI PI-RADS 分类和单纯放射组学预测 PCa 远处转移的 AUC 分别为 66.7%和 90.8%。

结论

超声成像组学与血清 PSA 相结合可显著提高 PCa 诊断、GS 预测及远处转移预测的效率。该方法是 PCa 筛查和随访的重要工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验