Suppr超能文献

ProxiMO:用于定量磁化率成像的近端多算子网络

ProxiMO: Proximal Multi-operator Networks for Quantitative Susceptibility Mapping.

作者信息

Orenstein Shmuel, Fang Zhenghan, Shin Hyeong-Geol, van Zijl Peter, Li Xu, Sulam Jeremias

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA.

出版信息

Mach Learn Clin Neuroimaging (2024). 2025;15266:13-23. doi: 10.1007/978-3-031-78761-4_2. Epub 2024 Dec 6.

Abstract

Quantitative Susceptibility Mapping (QSM) is a technique that derives tissue magnetic susceptibility distributions from phase measurements obtained through Magnetic Resonance (MR) imaging. This involves solving an ill-posed dipole inversion problem, however, and thus time-consuming and cumbersome data acquisition from several distinct head orientations becomes necessary to obtain an accurate solution. Most recent (supervised) deep learning methods for single-phase QSM require training data obtained via multiple orientations. In this work, we present an alternative unsupervised learning approach that can efficiently train on single-orientation measurement data alone, named ProxiMO (Proximal Multi-Operator), combining Learned Proximal Convolutional Neural Networks (LP-CNN) with multi-operator imaging (MOI). This integration enables LP-CNN training for QSM on single-phase data without ground truth reconstructions. We further introduce a semi-supervised variant, which further boosts the reconstruction performance, compared to the traditional supervised fashions. Extensive experiments on multicenter datasets illustrate the advantage of unsupervised training and the superiority of the proposed approach for QSM reconstruction. Code is available at https://github.com/shmuelor/ProxiMO.

摘要

定量磁化率成像(QSM)是一种通过磁共振(MR)成像获得的相位测量值来推导组织磁化率分布的技术。然而,这涉及解决一个不适定的偶极子反演问题,因此需要从几个不同的头部方向进行耗时且繁琐的数据采集,以获得准确的解决方案。大多数用于单相QSM的最新(监督)深度学习方法需要通过多个方向获得训练数据。在这项工作中,我们提出了一种替代的无监督学习方法,该方法可以仅在单方向测量数据上进行高效训练,名为ProxiMO(近端多算子),它将学习近端卷积神经网络(LP-CNN)与多算子成像(MOI)相结合。这种整合使得LP-CNN能够在无真实重建的单相数据上进行QSM训练。我们还引入了一种半监督变体,与传统的监督方式相比,它进一步提高了重建性能。在多中心数据集上进行的大量实验说明了无监督训练的优势以及所提出的QSM重建方法的优越性。代码可在https://github.com/shmuelor/ProxiMO获取。

相似文献

1
ProxiMO: Proximal Multi-operator Networks for Quantitative Susceptibility Mapping.ProxiMO:用于定量磁化率成像的近端多算子网络
Mach Learn Clin Neuroimaging (2024). 2025;15266:13-23. doi: 10.1007/978-3-031-78761-4_2. Epub 2024 Dec 6.
2
Learned Proximal Networks for Quantitative Susceptibility Mapping.用于定量磁化率成像的学习近端网络
Med Image Comput Comput Assist Interv. 2020 Oct;12262:125-135. doi: 10.1007/978-3-030-59713-9_13. Epub 2020 Sep 29.

本文引用的文献

6
Learned Proximal Networks for Quantitative Susceptibility Mapping.用于定量磁化率成像的学习近端网络
Med Image Comput Comput Assist Interv. 2020 Oct;12262:125-135. doi: 10.1007/978-3-030-59713-9_13. Epub 2020 Sep 29.
10
Quantitative susceptibility mapping using deep neural network: QSMnet.基于深度神经网络的定量磁化率映射:QSMnet。
Neuroimage. 2018 Oct 1;179:199-206. doi: 10.1016/j.neuroimage.2018.06.030. Epub 2018 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验