Bendidi Ihab, Bardes Adrien, Cohen Ethan, Lamiable Alexis, Bollot Guillaume, Genovesio Auguste
IBENS, Ecole Normale Supérieure PSL, Paris, 75005, France.
Minos Biosciences, Paris, 75005, France.
Biol Imaging. 2024 Nov 14;4:e12. doi: 10.1017/S2633903X2400014X. eCollection 2024.
Self-supervised representation learning (SSRL) in computer vision relies heavily on simple image transformations such as random rotation, crops, or illumination to learn meaningful and invariant features. Despite acknowledged importance, there is a lack of comprehensive exploration of the impact of transformation choice in the literature. Our study delves into this relationship, specifically focusing on microscopy imaging with subtle cell phenotype differences. We reveal that transformation design acts as a form of either unwanted or beneficial supervision, impacting feature clustering and representation relevance. Importantly, these effects vary based on class labels in a supervised dataset. In microscopy images, transformation design significantly influences the representation, introducing imperceptible yet strong biases. We demonstrate that strategic transformation selection, based on desired feature invariance, drastically improves classification performance and representation quality, even with limited training samples.
计算机视觉中的自监督表示学习(SSRL)严重依赖于简单的图像变换,如随机旋转、裁剪或光照,以学习有意义且不变的特征。尽管其重要性已得到认可,但文献中缺乏对变换选择影响的全面探索。我们的研究深入探讨了这种关系,特别关注具有细微细胞表型差异的显微镜成像。我们发现变换设计起着一种有害或有益监督的作用,影响特征聚类和表示相关性。重要的是,这些影响因监督数据集中的类别标签而异。在显微镜图像中,变换设计显著影响表示,引入难以察觉但很强的偏差。我们证明,基于所需特征不变性的策略性变换选择,即使在训练样本有限的情况下,也能显著提高分类性能和表示质量。