Suppr超能文献

仅使用自监督预训练改善含噪声标签的医学图像分类

Improving Medical Image Classification in Noisy Labels Using only Self-supervised Pretraining.

作者信息

Khanal Bidur, Bhattarai Binod, Khanal Bishesh, Linte Cristian A

机构信息

Center for Imaging Science, RIT, Rochester, NY, USA.

University of Aberdeen, Aberdeen, UK.

出版信息

Data Eng Med Imaging (2023). 2023 Oct;14314:78-90. doi: 10.1007/978-3-031-44992-5_8. Epub 2023 Oct 1.

Abstract

Noisy labels hurt deep learning-based supervised image classification performance as the models may overfit the noise and learn corrupted feature extractors. For natural image classification training with noisy labeled data, model initialization with contrastive self-supervised pretrained weights has shown to reduce feature corruption and improve classification performance. However, no works have explored: i) how other self-supervised approaches, such as pretext task-based pretraining, impact the learning with noisy label, and ii) any self-supervised pretraining methods alone for medical images in noisy label settings. Medical images often feature smaller datasets and subtle inter-class variations, requiring human expertise to ensure correct classification. Thus, it is not clear if the methods improving learning with noisy labels in natural image datasets such as CIFAR would also help with medical images. In this work, we explore contrastive and pretext task-based selfsupervised pretraining to initialize the weights of a deep learning classification model for two medical datasets with self-induced noisy labels- tissue histological images and chest X-ray images. Our results show that models initialized with pretrained weights obtained from self-supervised learning can effectively learn better features and improve robustness against noisy labels.

摘要

有噪声标签会损害基于深度学习的监督图像分类性能,因为模型可能会过度拟合噪声并学习到有缺陷的特征提取器。对于使用有噪声标注数据进行自然图像分类训练,使用对比自监督预训练权重进行模型初始化已被证明可以减少特征损坏并提高分类性能。然而,尚无研究探讨:i)其他自监督方法,如基于 pretext 任务的预训练,如何影响有噪声标签的学习;ii)在有噪声标签设置下,单独使用任何自监督预训练方法对医学图像的效果。医学图像通常具有较小的数据集和细微的类间差异,需要专业知识来确保正确分类。因此,尚不清楚在诸如 CIFAR 等自然图像数据集中改善有噪声标签学习的方法是否也适用于医学图像。在这项工作中,我们探索基于对比和 pretext 任务的自监督预训练,以初始化深度学习分类模型的权重,用于两个带有自诱导噪声标签的医学数据集——组织 histological 图像和胸部 X 光图像。我们的结果表明,使用从自监督学习获得的预训练权重初始化的模型可以有效地学习更好的特征,并提高对有噪声标签的鲁棒性。

相似文献

1
Improving Medical Image Classification in Noisy Labels Using only Self-supervised Pretraining.
Data Eng Med Imaging (2023). 2023 Oct;14314:78-90. doi: 10.1007/978-3-031-44992-5_8. Epub 2023 Oct 1.
2
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
7
Robust co-teaching learning with consistency-based noisy label correction for medical image classification.
Int J Comput Assist Radiol Surg. 2023 Apr;18(4):675-683. doi: 10.1007/s11548-022-02799-6. Epub 2022 Nov 27.
8
COVID-19 chest X-ray image classification in the presence of noisy labels.
Displays. 2023 Apr;77:102370. doi: 10.1016/j.displa.2023.102370. Epub 2023 Jan 8.
9
Breast tumor classification through learning from noisy labeled ultrasound images.
Med Phys. 2020 Mar;47(3):1048-1057. doi: 10.1002/mp.13966. Epub 2019 Dec 30.
10
Improving Data-Efficiency and Robustness of Medical Imaging Segmentation Using Inpainting-Based Self-Supervised Learning.
Bioengineering (Basel). 2023 Feb 4;10(2):207. doi: 10.3390/bioengineering10020207.

引用本文的文献

1
Active Label Refinement for Robust Training of Imbalanced Medical Image Classification Tasks in the Presence of High Label Noise.
Med Image Comput Comput Assist Interv. 2024 Oct;15011:37-47. doi: 10.1007/978-3-031-72120-5_4. Epub 2024 Oct 3.
2
Investigating the Robustness of Vision Transformers against Label Noise in Medical Image Classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-6. doi: 10.1109/EMBC53108.2024.10782929.

本文引用的文献

1
Investigating the impact of class-dependent label noise in medical image classification.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654420. Epub 2023 Apr 3.
3
COVID-19 chest X-ray image classification in the presence of noisy labels.
Displays. 2023 Apr;77:102370. doi: 10.1016/j.displa.2023.102370. Epub 2023 Jan 8.
4
Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation.
IEEE Trans Med Imaging. 2022 Jun;41(6):1533-1546. doi: 10.1109/TMI.2022.3141425. Epub 2022 Jun 1.
5
Robust Medical Image Classification From Noisy Labeled Data With Global and Local Representation Guided Co-Training.
IEEE Trans Med Imaging. 2022 Jun;41(6):1371-1382. doi: 10.1109/TMI.2021.3140140. Epub 2022 Jun 1.
6
Co-Correcting: Noise-Tolerant Medical Image Classification via Mutual Label Correction.
IEEE Trans Med Imaging. 2021 Dec;40(12):3580-3592. doi: 10.1109/TMI.2021.3091178. Epub 2021 Nov 30.
7
Self-Path: Self-Supervision for Classification of Pathology Images With Limited Annotations.
IEEE Trans Med Imaging. 2021 Oct;40(10):2845-2856. doi: 10.1109/TMI.2021.3056023. Epub 2021 Sep 30.
8
Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis.
Med Image Anal. 2020 Oct;65:101759. doi: 10.1016/j.media.2020.101759. Epub 2020 Jun 20.
9
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
PLoS Med. 2019 Jan 24;16(1):e1002730. doi: 10.1371/journal.pmed.1002730. eCollection 2019 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验