Suppr超能文献

仅使用自监督预训练改善含噪声标签的医学图像分类

Improving Medical Image Classification in Noisy Labels Using only Self-supervised Pretraining.

作者信息

Khanal Bidur, Bhattarai Binod, Khanal Bishesh, Linte Cristian A

机构信息

Center for Imaging Science, RIT, Rochester, NY, USA.

University of Aberdeen, Aberdeen, UK.

出版信息

Data Eng Med Imaging (2023). 2023 Oct;14314:78-90. doi: 10.1007/978-3-031-44992-5_8. Epub 2023 Oct 1.

Abstract

Noisy labels hurt deep learning-based supervised image classification performance as the models may overfit the noise and learn corrupted feature extractors. For natural image classification training with noisy labeled data, model initialization with contrastive self-supervised pretrained weights has shown to reduce feature corruption and improve classification performance. However, no works have explored: i) how other self-supervised approaches, such as pretext task-based pretraining, impact the learning with noisy label, and ii) any self-supervised pretraining methods alone for medical images in noisy label settings. Medical images often feature smaller datasets and subtle inter-class variations, requiring human expertise to ensure correct classification. Thus, it is not clear if the methods improving learning with noisy labels in natural image datasets such as CIFAR would also help with medical images. In this work, we explore contrastive and pretext task-based selfsupervised pretraining to initialize the weights of a deep learning classification model for two medical datasets with self-induced noisy labels- tissue histological images and chest X-ray images. Our results show that models initialized with pretrained weights obtained from self-supervised learning can effectively learn better features and improve robustness against noisy labels.

摘要

有噪声标签会损害基于深度学习的监督图像分类性能,因为模型可能会过度拟合噪声并学习到有缺陷的特征提取器。对于使用有噪声标注数据进行自然图像分类训练,使用对比自监督预训练权重进行模型初始化已被证明可以减少特征损坏并提高分类性能。然而,尚无研究探讨:i)其他自监督方法,如基于 pretext 任务的预训练,如何影响有噪声标签的学习;ii)在有噪声标签设置下,单独使用任何自监督预训练方法对医学图像的效果。医学图像通常具有较小的数据集和细微的类间差异,需要专业知识来确保正确分类。因此,尚不清楚在诸如 CIFAR 等自然图像数据集中改善有噪声标签学习的方法是否也适用于医学图像。在这项工作中,我们探索基于对比和 pretext 任务的自监督预训练,以初始化深度学习分类模型的权重,用于两个带有自诱导噪声标签的医学数据集——组织 histological 图像和胸部 X 光图像。我们的结果表明,使用从自监督学习获得的预训练权重初始化的模型可以有效地学习更好的特征,并提高对有噪声标签的鲁棒性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验