Wang Fei-Teng, Zhu Jia-Xin, Liu Chang, Xiong Ke, Liu Xiandong, Cheng Jun
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
Chem Sci. 2024 Dec 23;16(5):2325-2334. doi: 10.1039/d4sc06967f. eCollection 2025 Jan 29.
The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps. We reproduce interfacial structures consistent with molecular dynamics (AIMD) results and obtain diffusion and reorientation dynamics in agreement with the experiment. We show that the hydrogen bonds at the interface become stronger than those in bulk water, which makes the diffusion, reorientation, and hydrogen-bond dynamics slower. Our findings reveal that the spatial correlation of desorption events, driven by the breaking and making of hydrogen bonds, accelerates water exchange dynamics. These dynamics occur on timescales of several hundred picoseconds at 337 K and 302 K. We take a solid step forward toward studying the interface water dynamics and attribute the fast water exchange dynamics to the spatial correlation of the desorption events.
金属/水界面处水分子的溶剂化结构和动力学性质的改变会影响电化学过程的基元步骤。用逼真的表示方法模拟界面结构和动力学将为我们与实验研究建立联系提供坚实的基础。为了克服精度-效率的权衡并提供动力学见解,我们使用最先进的机器学习分子动力学(MLMD)来研究水交换动力学,这对于吸附/解吸和电化学反应步骤至关重要。我们再现了与分子动力学(AIMD)结果一致的界面结构,并获得了与实验相符的扩散和重取向动力学。我们表明,界面处的氢键比体相水中的氢键更强,这使得扩散、重取向和氢键动力学变慢。我们的研究结果表明,由氢键的断裂和形成驱动的解吸事件的空间相关性加速了水交换动力学。这些动力学在337 K和302 K下发生在几百皮秒的时间尺度上。我们朝着研究界面水动力学迈出了坚实的一步,并将快速水交换动力学归因于解吸事件的空间相关性。