Suppr超能文献

解吸事件的空间相关性加速了铂/水界面处的水交换动力学。

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

作者信息

Wang Fei-Teng, Zhu Jia-Xin, Liu Chang, Xiong Ke, Liu Xiandong, Cheng Jun

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China

出版信息

Chem Sci. 2024 Dec 23;16(5):2325-2334. doi: 10.1039/d4sc06967f. eCollection 2025 Jan 29.

Abstract

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps. We reproduce interfacial structures consistent with molecular dynamics (AIMD) results and obtain diffusion and reorientation dynamics in agreement with the experiment. We show that the hydrogen bonds at the interface become stronger than those in bulk water, which makes the diffusion, reorientation, and hydrogen-bond dynamics slower. Our findings reveal that the spatial correlation of desorption events, driven by the breaking and making of hydrogen bonds, accelerates water exchange dynamics. These dynamics occur on timescales of several hundred picoseconds at 337 K and 302 K. We take a solid step forward toward studying the interface water dynamics and attribute the fast water exchange dynamics to the spatial correlation of the desorption events.

摘要

金属/水界面处水分子的溶剂化结构和动力学性质的改变会影响电化学过程的基元步骤。用逼真的表示方法模拟界面结构和动力学将为我们与实验研究建立联系提供坚实的基础。为了克服精度-效率的权衡并提供动力学见解,我们使用最先进的机器学习分子动力学(MLMD)来研究水交换动力学,这对于吸附/解吸和电化学反应步骤至关重要。我们再现了与分子动力学(AIMD)结果一致的界面结构,并获得了与实验相符的扩散和重取向动力学。我们表明,界面处的氢键比体相水中的氢键更强,这使得扩散、重取向和氢键动力学变慢。我们的研究结果表明,由氢键的断裂和形成驱动的解吸事件的空间相关性加速了水交换动力学。这些动力学在337 K和302 K下发生在几百皮秒的时间尺度上。我们朝着研究界面水动力学迈出了坚实的一步,并将快速水交换动力学归因于解吸事件的空间相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7053/11780481/545c913dd5e4/d4sc06967f-f1.jpg

相似文献

1
Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.
Chem Sci. 2024 Dec 23;16(5):2325-2334. doi: 10.1039/d4sc06967f. eCollection 2025 Jan 29.
2
Dynamics of water interacting with interfaces, molecules, and ions.
Acc Chem Res. 2012 Jan 17;45(1):3-14. doi: 10.1021/ar2000088. Epub 2011 Mar 18.
3
Step-induced double-row pattern of interfacial water on rutile TiO(110) under electrochemical conditions.
Chem Sci. 2024 May 24;15(31):12264-12269. doi: 10.1039/d4sc01952k. eCollection 2024 Aug 7.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4937-45. doi: 10.1073/pnas.1604590113. Epub 2016 Aug 8.

本文引用的文献

2
Models of Electron Transfer at Different Electrode Materials.
Chem Rev. 2022 Jun 22;122(12):10581-10598. doi: 10.1021/acs.chemrev.1c00583. Epub 2022 Mar 14.
3
Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer.
Chem Rev. 2022 Jun 22;122(12):10599-10650. doi: 10.1021/acs.chemrev.1c00929. Epub 2022 Mar 1.
4
Is the water/Pt(111) interface ordered at room temperature?
J Chem Phys. 2021 Dec 14;155(22):224701. doi: 10.1063/5.0077580.
5
Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces.
J Phys Chem Lett. 2021 Aug 5;12(30):7299-7304. doi: 10.1021/acs.jpclett.1c02001. Epub 2021 Jul 28.
6
Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach.
J Am Chem Soc. 2020 Oct 28;142(43):18619-18627. doi: 10.1021/jacs.0c08289. Epub 2020 Sep 29.
8
Kinetics of Proton Discharge on Metal Electrodes: Effects of Vibrational Nonadiabaticity and Solvent Dynamics.
J Phys Chem Lett. 2019 Sep 19;10(18):5312-5317. doi: 10.1021/acs.jpclett.9b01984. Epub 2019 Aug 28.
9
In situ probing electrified interfacial water structures at atomically flat surfaces.
Nat Mater. 2019 Jul;18(7):697-701. doi: 10.1038/s41563-019-0356-x. Epub 2019 Apr 29.
10
OH formation and H adsorption at the liquid water-Pt(111) interface.
Chem Sci. 2018 Jul 23;9(34):6912-6921. doi: 10.1039/c8sc02495b. eCollection 2018 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验