Suppr超能文献

通过光电方法探究金/液态水界面处水合电子的产生及超快动力学

Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach.

作者信息

Lapointe François, Wolf Martin, Campen R Kramer, Tong Yujin

机构信息

Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.

Faculty of Physics, University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany.

出版信息

J Am Chem Soc. 2020 Oct 28;142(43):18619-18627. doi: 10.1021/jacs.0c08289. Epub 2020 Sep 29.

Abstract

The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this short-lived species in between two condensed matter layers. In this study, we develop a novel optoelectronic technique for the characterization of the birth and structural evolution of solvated electrons at the metal/liquid interface with a femtosecond time resolution. Using this tool, we record for the first time the transient spectra (in a photon energy range from 0.31 to 1.85 eV) with a time resolution of 50 fs revealing several novel aspects of their properties at the interface. Especially the transient species show state-dependent optical transition behaviors from being isotropic in the hot state to perpendicular to the surface in the trapped and solvated states. The technique will enable a better understanding of hot electron driven reactions at electrochemical interfaces.

摘要

水合电子在辐射与自由基化学、催化以及放射生物学领域具有重要的基础意义和实际应用价值。尽管其整体性质已得到广泛研究,但由于缺乏有效的工具来表征处于两个凝聚相层之间的这种短寿命物种,其在固/液界面的行为仍不明确。在本研究中,我们开发了一种新颖的光电技术,用于以飞秒时间分辨率表征金属/液体界面处溶剂化电子的产生及结构演化。利用该工具,我们首次记录了瞬态光谱(光子能量范围为0.31至1.85电子伏特),时间分辨率为50飞秒,揭示了它们在界面处性质的几个新方面。特别是瞬态物种表现出与状态相关的光学跃迁行为,从热态的各向同性转变为捕获态和溶剂化态时垂直于表面。该技术将有助于更好地理解电化学界面处的热电子驱动反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f66a/7596759/bdc62ddd711f/ja0c08289_0001.jpg

相似文献

1
Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach.
J Am Chem Soc. 2020 Oct 28;142(43):18619-18627. doi: 10.1021/jacs.0c08289. Epub 2020 Sep 29.
2
Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
Acc Chem Res. 2012 Jan 17;45(1):23-32. doi: 10.1021/ar200062m. Epub 2011 Sep 7.
3
Ultrafast dynamics of electrons in ammonia.
Annu Rev Phys Chem. 2015 Apr;66:97-118. doi: 10.1146/annurev-physchem-040214-121228. Epub 2014 Dec 1.
4
Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
Acc Chem Res. 2016 Jan 19;49(1):138-45. doi: 10.1021/acs.accounts.5b00361. Epub 2015 Dec 7.
5
Dynamics of electron solvation in molecular clusters.
Acc Chem Res. 2009 Jun 16;42(6):769-77. doi: 10.1021/ar800263z.
7
Binding energies, lifetimes and implications of bulk and interface solvated electrons in water.
Nat Chem. 2010 Apr;2(4):274-9. doi: 10.1038/nchem.580. Epub 2010 Mar 7.
8
9
Real-time measurement of the vertical binding energy during the birth of a solvated electron.
J Am Chem Soc. 2015 Mar 18;137(10):3520-4. doi: 10.1021/ja511571y. Epub 2015 Jan 30.
10
Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
Acc Chem Res. 2015 Aug 18;48(8):2475-83. doi: 10.1021/acs.accounts.5b00170. Epub 2015 Jul 16.

引用本文的文献

1
Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.
Chem Sci. 2024 Dec 23;16(5):2325-2334. doi: 10.1039/d4sc06967f. eCollection 2025 Jan 29.
2
Carbon Adsorbent Properties Impact Hydrated Electron Activity and Perfluorocarboxylic Acid (PFCA) Destruction.
ACS ES T Eng. 2024 Aug 2;4(9):2220-2233. doi: 10.1021/acsestengg.4c00211. eCollection 2024 Sep 13.
4
Water at charged interfaces.
Nat Rev Chem. 2021 Jul;5(7):466-485. doi: 10.1038/s41570-021-00293-2. Epub 2021 Jun 24.
5
Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials.
ACS Omega. 2023 Mar 15;8(12):10669-10689. doi: 10.1021/acsomega.2c06776. eCollection 2023 Mar 28.
6
Mechanism for plasmon-generated solvated electrons.
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2217035120. doi: 10.1073/pnas.2217035120. Epub 2023 Jan 10.
7
Early dynamics of the emission of solvated electrons from nanodiamonds in water.
Nanoscale. 2022 Dec 1;14(46):17188-17195. doi: 10.1039/d2nr03919b.
8
On the origins of life's homochirality: Inducing enantiomeric excess with spin-polarized electrons.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2204765119. doi: 10.1073/pnas.2204765119. Epub 2022 Jul 5.

本文引用的文献

1
Structure of the aqueous electron.
Phys Chem Chem Phys. 2019 Oct 7;21(37):20538-20565. doi: 10.1039/c9cp04222a. Epub 2019 Sep 9.
2
Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics.
J Am Chem Soc. 2019 Mar 27;141(12):4777-4790. doi: 10.1021/jacs.8b13188. Epub 2019 Feb 27.
3
Electronic Levels of Excess Electrons in Liquid Water.
J Phys Chem Lett. 2017 May 4;8(9):2055-2059. doi: 10.1021/acs.jpclett.7b00699. Epub 2017 Apr 27.
4
The Hydrated Electron.
Annu Rev Phys Chem. 2017 May 5;68:447-472. doi: 10.1146/annurev-physchem-052516-050816. Epub 2017 Mar 27.
5
Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface.
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4211-4214. doi: 10.1002/anie.201612183. Epub 2017 Mar 16.
6
Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface.
J Phys Chem Lett. 2016 Oct 20;7(20):4079-4085. doi: 10.1021/acs.jpclett.6b01985. Epub 2016 Oct 3.
7
The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species.
J Am Chem Soc. 2016 Aug 31;138(34):10879-86. doi: 10.1021/jacs.6b06715. Epub 2016 Aug 19.
9
Electron at the Surface of Water: Dehydrated or Not?
J Phys Chem Lett. 2013 Jan 17;4(2):338-43. doi: 10.1021/jz3020953. Epub 2013 Jan 8.
10
Real-time measurement of the vertical binding energy during the birth of a solvated electron.
J Am Chem Soc. 2015 Mar 18;137(10):3520-4. doi: 10.1021/ja511571y. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验