Dreyer Ingo, Hernández-Rojas Naomí, Bolua-Hernández Yasnaya, Tapia-Castillo Valentina de Los Angeles, Astola-Mariscal Sadith Z, Díaz-Pico Erbio, Mérida-Quesada Franko, Vergara-Valladares Fernando, Arrey-Salas Oscar, Rubio-Meléndez María E, Riedelsberger Janin, Michard Erwan
Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile.
Programa de Doctorado en Ciencias mención Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile.
Quant Plant Biol. 2024 Sep 3;5:e8. doi: 10.1017/qpb.2024.8. eCollection 2024.
Ion homeostasis is a crucial process in plants that is closely linked to the efficiency of nutrient uptake, stress tolerance and overall plant growth and development. Nevertheless, our understanding of the fundamental processes of ion homeostasis is still incomplete and highly fragmented. Especially at the mechanistic level, we are still in the process of dissecting physiological systems to analyse the different parts in isolation. However, modelling approaches have shown that it is not individual transporters but rather transporter networks (homeostats) that control membrane transport and associated homeostatic processes in plant cells. To facilitate access to such theoretical approaches, the modelling of the potassium homeostat is explained here in detail to serve as a blueprint for other homeostats. The unbiased approach provided strong arguments for the abundant existence of electroneutral H/K antiporters in plants.
离子稳态是植物中的一个关键过程,它与养分吸收效率、胁迫耐受性以及植物整体生长发育密切相关。然而,我们对离子稳态基本过程的理解仍然不完整且高度碎片化。特别是在机制层面,我们仍在剖析生理系统以孤立地分析不同部分。然而,建模方法表明,控制植物细胞膜转运及相关稳态过程的并非单个转运蛋白,而是转运蛋白网络(稳态器)。为便于采用此类理论方法,本文详细解释了钾稳态器的建模,以作为其他稳态器的蓝本。这种无偏差的方法为植物中大量存在的电中性H/K反向转运蛋白提供了有力证据。