Suppr超能文献

营养循环是植物细胞维持内稳态的一个重要机制。

Nutrient cycling is an important mechanism for homeostasis in plant cells.

机构信息

Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca CL-3460000, Chile.

出版信息

Plant Physiol. 2021 Dec 4;187(4):2246-2261. doi: 10.1093/plphys/kiab217.

Abstract

Homeostasis in living cells refers to the steady state of internal, physical, and chemical conditions. It is sustained by self-regulation of the dynamic cellular system. To gain insight into the homeostatic mechanisms that maintain cytosolic nutrient concentrations in plant cells within a homeostatic range, we performed computational cell biology experiments. We mathematically modeled membrane transporter systems and simulated their dynamics. Detailed analyses of 'what-if' scenarios demonstrated that a single transporter type for a nutrient, irrespective of whether it is a channel or a cotransporter, is not sufficient to calibrate a desired cytosolic concentration. A cell cannot flexibly react to different external conditions. Rather, at least two different transporter types for the same nutrient, which are energized differently, are required. The gain of flexibility in adjusting a cytosolic concentration was accompanied by the establishment of energy-consuming cycles at the membrane, suggesting that these putatively "futile" cycles are not as futile as they appear. Accounting for the complex interplay of transporter networks at the cellular level may help design strategies for increasing nutrient use efficiency of crop plants.

摘要

活细胞中的稳态是指内部物理和化学条件的稳定状态。它是通过动态细胞系统的自我调节来维持的。为了深入了解维持植物细胞胞质营养浓度在稳态范围内的稳态机制,我们进行了计算细胞生物学实验。我们对膜转运体系统进行了数学建模,并模拟了它们的动力学。对“如果......会怎样”情景的详细分析表明,对于一种营养物质,无论它是通道还是共转运体,单一的转运体类型都不足以校准所需的胞质浓度。细胞不能灵活地对不同的外部条件做出反应。相反,至少需要两种不同的、能量供应方式不同的同种营养物质的转运体类型。在调整胞质浓度方面的灵活性的获得伴随着在膜上建立能量消耗循环,这表明这些推测的“无效”循环并不像它们看起来那样无效。在细胞水平上考虑转运体网络的复杂相互作用可能有助于设计提高作物植物养分利用效率的策略。

相似文献

2
Achieving global perfect homeostasis through transporter regulation.通过转运体调节实现全球完美的内环境稳定。
PLoS Comput Biol. 2017 Apr 17;13(4):e1005458. doi: 10.1371/journal.pcbi.1005458. eCollection 2017 Apr.
8
Root uptake regulation: a central process for NPS homeostasis in plants.根系吸收调节:植物中氮磷硫稳态的核心过程。
Curr Opin Plant Biol. 2009 Jun;12(3):328-38. doi: 10.1016/j.pbi.2009.04.015. Epub 2009 Jun 6.
10
Lipid trafficking in plant cells.植物细胞中的脂质运输
Traffic. 2014 Sep;15(9):915-32. doi: 10.1111/tra.12187. Epub 2014 Jul 10.

引用本文的文献

1
Chloride transport and homeostasis in plants.植物中的氯离子转运与稳态
Quant Plant Biol. 2025 Jun 30;6:e20. doi: 10.1017/qpb.2025.10008. eCollection 2025.

本文引用的文献

4
Plant Membrane Transport Research in the Post-genomic Era.后基因组时代的植物膜转运研究。
Plant Commun. 2019 Dec 10;1(1):100013. doi: 10.1016/j.xplc.2019.100013. eCollection 2020 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验