Suppr超能文献

一种预测急性缺血性卒中后6个月内发生卒中后认知障碍的新型模型的开发与验证

Development and validation of a novel model to predict post-stroke cognitive impairment within 6 months after acute ischemic stroke.

作者信息

Wei Ming, Zhu Xiaofeng, Yang Xiu, Shang Jin, Tong Qiang, Han Qiu

机构信息

Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.

出版信息

Front Neurol. 2024 Dec 24;15:1451786. doi: 10.3389/fneur.2024.1451786. eCollection 2024.

Abstract

BACKGROUND

Cognitive decline following acute ischemic stroke (AIS), termed post-stroke cognitive impairment (PSCI), is a prevalent phenomenon that significantly elevates disability and mortality rates among affected patients. The objective of this investigation was to develop a robust clinical prediction model capable of forecasting PSCI within six months post-AIS and subsequently validate its effectiveness.

METHODS

A cohort of 573 AIS patients was stratified into two groups: those with PSCI (260 cases) and those who remained cognitively normal (CN) (313 cases). These patients were further subdivided into three distinct cohorts: a development cohort comprising 193 AIS patients, an internal validation cohort with 193 AIS patients, and an external validation cohort encompassing 187 AIS patients. A thorough multifactor logistic regression analysis was conducted to identify independent predictors of PSCI, which were subsequently incorporated into the prediction model for comprehensive analysis and validation. The discriminatory power, calibration accuracy, and clinical net benefits of the prediction model were rigorously evaluated using the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analyses, respectively.

RESULTS

Utilizing a meticulously selected panel of variables, including smoking status, alcohol consumption, female gender, low educational attainment, NIHSS score at admission, stroke progression, diabetes mellitus, atrial fibrillation, stroke localization, HCY levels, and Lp-PLA2 levels, a clinical prediction model was formulated to predict the occurrence of PSCI within six months of AIS. The model demonstrated AUC-ROC values of 0.898 (95%CI, 0.853-0.942), 0.847 (95%CI, 0.794-0.901), and 0.849 (95%CI, 0.7946-0.9031) in the development, internal validation, and external validation cohorts, respectively. Further validation through calibration curve analyses, Hosmer-Lemeshow goodness-of-fit tests, and additional metrics confirmed the model's impressive predictive performance.

CONCLUSION

The proposed model exhibits strong discriminative ability for predicting PSCI and holds considerable promise for guiding clinical decision-making. However, ongoing optimization with multicenter data is necessary to bolster its robustness and broaden its applicability.

摘要

背景

急性缺血性卒中(AIS)后出现的认知功能下降,即卒中后认知障碍(PSCI),是一种普遍现象,会显著提高受影响患者的残疾率和死亡率。本研究的目的是建立一个强大的临床预测模型,能够预测AIS后6个月内的PSCI,并随后验证其有效性。

方法

将573例AIS患者分为两组:PSCI患者(260例)和认知功能正常(CN)患者(313例)。这些患者进一步细分为三个不同的队列:一个由193例AIS患者组成的开发队列、一个有193例AIS患者的内部验证队列和一个包含187例AIS患者的外部验证队列。进行了全面的多因素逻辑回归分析,以确定PSCI的独立预测因素,随后将其纳入预测模型进行综合分析和验证。分别使用受试者操作特征曲线下面积(AUC-ROC)、校准图和决策曲线分析对预测模型的辨别力、校准准确性和临床净效益进行了严格评估。

结果

利用精心挑选的一组变量,包括吸烟状况、饮酒情况、女性性别、低教育程度、入院时的NIHSS评分、卒中进展、糖尿病、心房颤动、卒中部位、同型半胱氨酸水平和脂蛋白磷脂酶A2水平,制定了一个临床预测模型,以预测AIS后6个月内PSCI的发生。该模型在开发队列、内部验证队列和外部验证队列中的AUC-ROC值分别为0.898(95%CI,0.853-0.942)、0.847(95%CI,0.794-0.901)和0.849(95%CI,0.7946-0.9031)。通过校准曲线分析、Hosmer-Lemeshow拟合优度检验和其他指标进行的进一步验证证实了该模型令人印象深刻的预测性能。

结论

所提出的模型在预测PSCI方面具有很强的辨别能力,在指导临床决策方面有很大的前景。然而,需要用多中心数据进行持续优化,以增强其稳健性并扩大其适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3c/11703722/8b8048fa68dd/fneur-15-1451786-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验