Blanchais Corentin, Pages Carine, Campos Manuel, Boubekeur Kenza, Contarin Rachel, Orlando Mathias, Siguier Patricia, Laaberki Maria-Halima, Cornet François, Charpentier Xavier, Rousseau Philippe
Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France.
Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 46 All. d'Italie, 69007 Lyon, France.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1255.
Antibiotic-resistant infections are a pressing clinical challenge. Plasmids are known to accelerate the emergence of resistance by facilitating horizontal gene transfer of antibiotic resistance genes between bacteria. We explore this question in Acinetobacter baumannii, a globally emerging nosocomial pathogen responsible for a wide range of infections with a worrying accumulation of resistance, particularly involving plasmids. In this species, plasmids of the Rep_3 family harbor antibiotic resistance genes within variable regions flanked by potential site-specific recombination sites recognized by the XerCD recombinase. We first show that the Xer system of A. baumannii functions as described in Escherichia coli, resolving chromosome dimers at the dif site and recombining plasmid-carried sites. However, the multiple Xer recombination sites found in Rep_3 plasmids do not allow excision of plasmid fragments. Rather, they recombine to cointegrate plasmids, which could then evolve to exchange genes. Cointegrates represent a significant fraction of the plasmid population and their formation is controlled by the sequence of recombination sites, which determines the compatibility between recombination sites. We conclude that plasmids in A. baumannii frequently recombine by Xer recombination, allowing a high level of yet controlled plasticity in the acquisition and combination of antibiotic resistance genes.
抗生素耐药性感染是一个紧迫的临床挑战。已知质粒通过促进细菌之间抗生素耐药基因的水平基因转移来加速耐药性的出现。我们在鲍曼不动杆菌中探讨了这个问题,鲍曼不动杆菌是一种在全球范围内出现的医院病原体,可导致多种感染,耐药性令人担忧地不断积累,尤其是涉及质粒。在这个物种中,Rep_3家族的质粒在可变区域内携带抗生素耐药基因,这些可变区域两侧是XerCD重组酶识别的潜在位点特异性重组位点。我们首先表明,鲍曼不动杆菌的Xer系统的功能与大肠杆菌中描述的相同,在dif位点解决染色体二聚体并重组质粒携带的位点。然而,在Rep_3质粒中发现的多个Xer重组位点不允许质粒片段切除。相反,它们重组形成共整合质粒,然后这些共整合质粒可能进化以交换基因。共整合质粒占质粒群体的很大一部分,它们的形成受重组位点序列的控制,重组位点序列决定了重组位点之间的兼容性。我们得出结论,鲍曼不动杆菌中的质粒经常通过Xer重组进行重组,从而在抗生素耐药基因的获取和组合中实现高水平但可控的可塑性。