Suppr超能文献

通过模拟建模和微机电系统筛选定制超高性能化学传感器。

Tailoring Super-Performed Chemo-Sensor via Simulation-Modeling and MEMS-Screening.

作者信息

Xu Wei, Zhang Wukun, Shen Zhengqi, Xu Wenxing, Zhao Jianhao, Li Huizi, He Qingguo, Fu Yanyan, Cheng Jiangong

机构信息

State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China.

Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100039, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(8):e2412937. doi: 10.1002/advs.202412937. Epub 2025 Jan 7.

Abstract

Chemo-sensor designing involves a time-consuming trial-and-error screening process, which commonly cannot lead to optimal SR features (Sensitivity, Selectivity, Speed, Stability, and Reversibility). Due to strong path dependence on reported groups/mechanisms, conventional chemo-sensors often fail to meet critical application demands, especially in achieving high reversibility without compromising other features. Here, a three-step screen and design strategy is developed for gaining customized chemo-sensors, through Structure modeling; MEMS (Micro Electro Mechanical Systems) analysis, and Performance verification. With such a strategy, the coordination hanging anion mechanism is screened out for reversible nerve agent detection and shows reversible emission enhancement by 25.8 times with DCP, ultrasensitive vapor phase detection (5.7 ppb), and rapid response(10 s) and recovery speed (20 s). Such tailored designing strategy for new organic chemo-sensors will probably play an important role in developing high-performance sensing system in the future.

摘要

化学传感器的设计涉及一个耗时的反复试验筛选过程,该过程通常无法产生最佳的传感特性(灵敏度、选择性、速度、稳定性和可逆性)。由于对报道的基团/机制存在强烈的路径依赖性,传统的化学传感器往往无法满足关键的应用需求,尤其是在不影响其他特性的情况下实现高可逆性。在此,通过结构建模、微机电系统(MEMS)分析和性能验证,开发了一种三步筛选和设计策略,以获得定制的化学传感器。采用这种策略,筛选出了用于可逆神经毒剂检测的配位悬挂阴离子机制,该机制对二氯磷酸酯(DCP)显示出25.8倍的可逆发射增强、超灵敏的气相检测(5.7 ppb)以及快速响应(10秒)和恢复速度(20秒)。这种针对新型有机化学传感器的定制设计策略可能会在未来高性能传感系统的开发中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a933/11848570/03c68fc24a51/ADVS-12-2412937-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验