Ma Hongyun, Sun Kai, Cai Yunong, Li Fengfeng, Ma Lingxiao, Qi Yifeng, Sheng Hongwei, Wu Liang, Wang Kai, Wang Jun, Fu Yujun, Chai Yang, Lan Wei
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China.
School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China.
Angew Chem Int Ed Engl. 2025 Feb 17;64(8):e202420404. doi: 10.1002/anie.202420404. Epub 2025 Jan 16.
Ion/electron-coupling logic operation is recognized as the most promising approach to achieving in-depth brain-inspired computing, but the lack of high-performance ion/electron-coupling devices with high operating frequencies much restricts the fast development of this field. Accordingly, we herein report an orthorhombic niobium pentoxide (T-NbO) based lithium-ion capacitor diode (CAPode) that possesses thoroughly improved performances to achieve multifrequency ion/electron-coupling logic operations. Specifically, benefiting from the unique crystal structure and fast ion-transport topology of T-NbO, the constructed CAPode exhibits a high response frequency of up to 122 Hz, over three orders of magnitude higher than those of the state-of-the-art CAPodes. Meanwhile, the T-NbO based CAPode delivers a record-high rectification ratio of 108, a high specific capacity of 390 C g, a wide voltage window of -1.5-1.5 V, and a superior cycling stability over 2000 cycles. Combining these performance advantages, the T-NbO based CAPode is demonstrated to be fully competent in typical AND and OR logic gates over a wide frequency range of 1-100 Hz, validating great potential in the burgeoning field of multifrequency ion/electron-coupling logic operations.
离子/电子耦合逻辑运算被认为是实现深度脑启发计算最具前景的方法,但缺乏具有高工作频率的高性能离子/电子耦合器件极大地限制了该领域的快速发展。因此,我们在此报告一种基于正交五氧化二铌(T-NbO)的锂离子电容二极管(CAPode),其性能得到了全面提升,以实现多频率离子/电子耦合逻辑运算。具体而言,受益于T-NbO独特的晶体结构和快速的离子传输拓扑结构,所构建的CAPode展现出高达122 Hz的高响应频率,比最先进的CAPode高出三个数量级以上。同时,基于T-NbO的CAPode具有创纪录的108整流比、390 C g的高比容量、-1.5至1.5 V的宽电压窗口以及超过2000次循环的卓越循环稳定性。结合这些性能优势,基于T-NbO的CAPode在1至100 Hz的宽频率范围内被证明完全胜任典型的与门和或门逻辑,验证了其在新兴的多频率离子/电子耦合逻辑运算领域的巨大潜力。