Xu Huan, Zhang Xiaohan, Lv Zhongyue, Huang Fengjuan, Zou Yu, Wang Chuang, Ding Feng, Sun Yunxiang
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Department of Neurology, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China.
Colloids Surf B Biointerfaces. 2025 Apr;248:114498. doi: 10.1016/j.colsurfb.2025.114498. Epub 2025 Jan 5.
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations. Our findings revealed that both peptides primarily adopt helical structures as monomers but shift to β-sheets upon dimerization. Monomeric state, PSM-β1 exhibited frequent transitions between helical and β-sheet forms, while PSM-β2 largely retained a helical structure. Upon dimerization, both peptides showed pronounced β-sheet formation around conserved C-terminal residues 21-44. Residues 21-33, largely unstructured as monomers, demonstrated strong tendencies for β-sheet formation and intermolecular interactions, underscoring their central role in the self-assembly of both peptides. Additionally, the PSM-β1 N-terminus formed β-sheets only when interacting with the C-terminus, whereas the PSM-β2 N-terminus remained helical and uninvolved in β-sheet formation. These distinct aggregation behaviors likely contribute to biofilm dynamics, with C-terminal regions facilitating biofilm formation and N-terminal regions influencing stability. Targeting residues 21-33 in PSM-β1 and PSM-β2 offers a promising therapeutic approach for disrupting biofilm integrity. This study advances our understanding of PSM-β1 and PSM-β2 self-assembly and presents new targets for drug design against biofilm-associated diseases.
金黄色葡萄球菌中的酚溶性调节素(PSMs)形成功能性细菌淀粉样蛋白是生物膜相关感染的关键组成部分,为抵御抗菌剂和免疫防御提供强大的保护屏障。阐明PSM在生物膜基质内的自组装分子机制对于制定破坏生物膜完整性和对抗生物膜相关感染的策略至关重要。在本研究中,我们通过长时间尺度的原子离散分子动力学模拟研究PSM-β1和PSM-β2的折叠和二聚化,分析它们的自组装动力学。我们的研究结果表明,两种肽作为单体时主要采用螺旋结构,但二聚化后转变为β-折叠。在单体状态下,PSM-β1在螺旋和β-折叠形式之间频繁转换,而PSM-β2在很大程度上保留螺旋结构。二聚化后,两种肽在保守的C末端残基21-44周围均显示出明显的β-折叠形成。残基21-33作为单体时大多无结构,表现出强烈的β-折叠形成和分子间相互作用倾向,突出了它们在两种肽自组装中的核心作用。此外,PSM-β1的N末端仅在与C末端相互作用时形成β-折叠,而PSM-β2的N末端保持螺旋结构且不参与β-折叠形成。这些不同的聚集行为可能对生物膜动力学有贡献,C末端区域促进生物膜形成,N末端区域影响稳定性。靶向PSM-β1和PSM-β2中的残基21-33为破坏生物膜完整性提供了一种有前景的治疗方法。本研究增进了我们对PSM-β1和PSM-β2自组装的理解,并为针对生物膜相关疾病的药物设计提供了新靶点。