Suppr超能文献

电化学拓扑结构对用于药物诱导心脏毒性筛查的微电极阵列检测灵敏度的影响。

Effect of electrochemical topology on detection sensitivity in MEA assay for drug-induced cardiotoxicity screening.

作者信息

Kim Byunggik, Choi Jong Seob, Zhu Yiguang, Kim Juhyun, Kim Ye Seul, Parra Andres, Locke Paul A, Kim Jae Ho, Herron Todd, Kim Deok-Ho

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States.

Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam, 31080, Republic of Korea; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States.

出版信息

Biosens Bioelectron. 2025 Mar 15;272:117082. doi: 10.1016/j.bios.2024.117082. Epub 2024 Dec 25.

Abstract

Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.77 MΩ to 3.41 MΩ, improving charge transfer efficiency as demonstrated by electrochemical impedance spectroscopy and cyclic voltammetry. Additionally, the limit of detection significantly decreased from 0.175 MΩ (Coupled) to 0.040 MΩ (Decoupled), underscoring the system's enhanced sensitivity. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we evaluated the effects of three proarrhythmic drugs: Ranolazine, Domperidone, and Sotalol. Under the decoupled condition, the platform exhibited reductions in IC50 values for Domperidone (0.71 μM-0.29 μM), Sotalol (7.61 μM-0.27 μM), and Ranolazine (53.08 μM-5.89 μM), demonstrating significantly improved drug detection sensitivity. Longitudinal analysis revealed significant alterations in key electrophysiological parameters, including beating period (BP), field potential duration (FPD), spike slope, and amplitude, which were consistent with the known pharmacological actions of these drugs. Further validation through action potential (AP) waveform analysis showed enhanced repolarization dynamics, confirming the platform's predictive capabilities. Our findings highlight the critical role of electrochemical topology in optimizing MEA performance. The NanoMEA system, featuring decoupled Nafion-coated electrodes, represents a robust and sensitive platform for cardiotoxicity screening, setting a new standard for preclinical drug safety assessment and advancing bioelectronic device design for cardiac research.

摘要

心脏毒性仍然是药物研发中的一个重大挑战,占因心脏缺血和致心律失常性导致药物撤市的45%。为了克服传统基于多电极阵列(MEA)的心脏毒性检测方法的局限性,我们开发了一种带有去耦参比电极的Nafion涂层纳米MEA平台,该平台提高了电生理测量的灵敏度。“去耦”配置显著降低了极化电阻(Rp),从12.77 MΩ降至3.41 MΩ,如电化学阻抗谱和循环伏安法所示,提高了电荷转移效率。此外,检测限从0.175 MΩ(耦合)显著降至0.040 MΩ(去耦),突出了该系统增强的灵敏度。我们使用人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)评估了三种促心律失常药物的效果:雷诺嗪、多潘立酮和索他洛尔。在去耦条件下,该平台显示多潘立酮(0.71 μM - 0.29 μM)、索他洛尔(7.61 μM - 0.27 μM)和雷诺嗪(53.08 μM - 5.89 μM)的半数抑制浓度(IC50)值降低,表明药物检测灵敏度显著提高。纵向分析揭示了关键电生理参数的显著变化,包括心动周期(BP)、场电位持续时间(FPD)、尖峰斜率和幅度,这与这些药物已知的药理作用一致。通过动作电位(AP)波形分析的进一步验证显示复极化动力学增强,证实了该平台的预测能力。我们的研究结果突出了电化学拓扑结构在优化MEA性能中的关键作用。具有去耦Nafion涂层电极的纳米MEA系统是一个用于心脏毒性筛查的强大且灵敏的平台,为临床前药物安全性评估设定了新标准,并推动了心脏研究的生物电子设备设计。

相似文献

本文引用的文献

8
Assessment of Cardiotoxicity With Stem Cell-based Strategies.基于干细胞策略的心脏毒性评估
Clin Ther. 2020 Oct;42(10):1892-1910. doi: 10.1016/j.clinthera.2020.08.012. Epub 2020 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验