Suppr超能文献

用于心脏电生理学的纳米图案化全氟磺酸微电极阵列

Nanopatterned Nafion microelectrode arrays for cardiac electrophysiology.

作者信息

Choi Jong Seob, Smith Alec S T, Williams Nisa P, Matsubara Tatsuya, Choi Minji, Kim Joon-Wan, Kim Hyung Jin, Choi Seungkeun, Kim Deok-Ho

机构信息

Department of Biomedical Engineering and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.

Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, United States.

出版信息

Adv Funct Mater. 2020 Jun 18;30(25). doi: 10.1002/adfm.201910660. Epub 2020 Apr 22.

Abstract

In this study, we report nanopatterned Nafion microelectrode arrays for in vitro cardiac electrophysiology. With the aim of defining sophisticated Nafion nanostructures with highly ionic conductivity, fabrication parameters such as Nafion concentration and curing temperature were optimized. By increasing curing temperature and Nafion concentration, we were able to control the replication fidelity of Nafion nanopatterns when copied from a PDMS master mold. We also found that cross-sectional morphology and ion current density of nanopatterned Nafion strongly depends on the fabrication parameters. To investigate this dependency, current-voltage analysis was conducted using organic electrochemical transistors (OECT) overlaid with patterned Nafion substrates. Nanopatterned Nafion was found to allow higher ion current densities than unpatterned surfaces. Furthermore, higher curing temperatures were found to render Nafion layers with higher ion/electrical transfer properties. To optimize nanopattern dimensions, electrical current flows, and film uniformity, a final configuration consisting of 5% nanopatterned Nafion cured at 65°C was chosen. Multielectrode arrays (MEAs) were then covered with optimized Nafion nanopatterns and used for electrophysiological analysis of two types of induced pluripotent stem cell-derived cardiomyocytes (iPSCs-CMs). These data highlight the suitability of nanopatterned Nafion, combined with MEAs, for enhancing the cellular environment of iPSC-CMs for use in electrophysiological analysis .

摘要

在本研究中,我们报道了用于体外心脏电生理学的纳米图案化的Nafion微电极阵列。为了定义具有高离子传导率的精密Nafion纳米结构,我们优化了诸如Nafion浓度和固化温度等制造参数。通过提高固化温度和Nafion浓度,我们能够在从PDMS母模复制时控制Nafion纳米图案的复制保真度。我们还发现,纳米图案化Nafion的横截面形态和离子电流密度强烈依赖于制造参数。为了研究这种依赖性,我们使用覆盖有图案化Nafion基板的有机电化学晶体管(OECT)进行了电流-电压分析。发现纳米图案化的Nafion比未图案化的表面允许更高的离子电流密度。此外,发现更高的固化温度会使Nafion层具有更高的离子/电传输特性。为了优化纳米图案尺寸、电流流动和膜均匀性,选择了由在65°C固化的5%纳米图案化Nafion组成的最终配置。然后将多电极阵列(MEA)覆盖上优化的Nafion纳米图案,并用于两种诱导多能干细胞衍生的心肌细胞(iPSC-CM)的电生理分析。这些数据突出了纳米图案化Nafion与MEA相结合在增强用于电生理分析的iPSC-CM细胞环境方面的适用性。

相似文献

1
Nanopatterned Nafion microelectrode arrays for cardiac electrophysiology.
Adv Funct Mater. 2020 Jun 18;30(25). doi: 10.1002/adfm.201910660. Epub 2020 Apr 22.
2
Sensitivity enhancement of an impedance-based cellular biosensor by a nanopatterned PEDOT:Nafion interface.
Chem Commun (Camb). 2022 Sep 8;58(72):10012-10015. doi: 10.1039/d2cc01703b.
5
Intracellular Recording of Cardiomyocyte Action Potentials with Nanopatterned Volcano-Shaped Microelectrode Arrays.
Nano Lett. 2019 Sep 11;19(9):6173-6181. doi: 10.1021/acs.nanolett.9b02209. Epub 2019 Aug 22.
6
Cardiac Cell Patterning on Customized Microelectrode Arrays for Electrophysiological Recordings.
Micromachines (Basel). 2021 Oct 31;12(11):1351. doi: 10.3390/mi12111351.
7
Highly selective and sensitive determination of dopamine using Nafion coated microelectrode arrays.
J Nanosci Nanotechnol. 2013 Feb;13(2):1598-601. doi: 10.1166/jnn.2013.6077.
8
Water-Based PEDOT:Nafion Dispersion for Organic Bioelectronics.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29807-29817. doi: 10.1021/acsami.0c06538. Epub 2020 Jun 22.
9
PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells.
Biosens Bioelectron. 2017 Jul 15;93:132-138. doi: 10.1016/j.bios.2016.09.047. Epub 2016 Sep 14.
10
Nanopatterning effects on astrocyte reactivity.
J Biomed Mater Res A. 2013 Jun;101(6):1743-57. doi: 10.1002/jbm.a.34480. Epub 2012 Nov 27.

引用本文的文献

2
Effect of electrochemical topology on detection sensitivity in MEA assay for drug-induced cardiotoxicity screening.
Biosens Bioelectron. 2025 Mar 15;272:117082. doi: 10.1016/j.bios.2024.117082. Epub 2024 Dec 25.
4
Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering.
Biofabrication. 2023 Jun 22;15(3):035023. doi: 10.1088/1758-5090/acd8f4.
5
A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy.
Science. 2022 May 27;376(6596):1006-1012. doi: 10.1126/science.abm1703. Epub 2022 May 26.
6
Biomaterials-based Approaches for Cardiac Regeneration.
Korean Circ J. 2021 Dec;51(12):943-960. doi: 10.4070/kcj.2021.0291.
8
Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces.
Biosens Bioelectron. 2021 Jan 1;171:112687. doi: 10.1016/j.bios.2020.112687. Epub 2020 Oct 9.

本文引用的文献

1
Transparent, conformable, active multielectrode array using organic electrochemical transistors.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10554-10559. doi: 10.1073/pnas.1703886114. Epub 2017 Sep 18.
2
Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography.
Acta Biomater. 2017 Mar 15;51:21-52. doi: 10.1016/j.actbio.2017.01.023. Epub 2017 Jan 7.
3
Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.
Biotechnol Adv. 2017 Jan-Feb;35(1):77-94. doi: 10.1016/j.biotechadv.2016.12.002. Epub 2016 Dec 20.
4
Regulating the Membrane Transport Activity and Death of Cells via Electroosmotic Manipulation.
Biophys J. 2016 Jun 21;110(12):2769-2778. doi: 10.1016/j.bpj.2016.05.011.
5
Structural control of mixed ionic and electronic transport in conducting polymers.
Nat Commun. 2016 Apr 19;7:11287. doi: 10.1038/ncomms11287.
7
Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells.
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):21923-32. doi: 10.1021/acsami.5b11671. Epub 2016 Feb 11.
8
Nanopatterned Human iPSC-based Model of a Dystrophin-Null Cardiomyopathic Phenotype.
Cell Mol Bioeng. 2015 Sep;8(3):320-332. doi: 10.1007/s12195-015-0413-8.
10
A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes.
Stem Cells Transl Med. 2014 Dec;3(12):1473-83. doi: 10.5966/sctm.2014-0072. Epub 2014 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验