Suppr超能文献

一个具有情商的触觉系统——焦虑检测与缓解的有效解决方案。

An emotionally intelligent haptic system - An efficient solution for anxiety detection and mitigation.

作者信息

Mishra Swapneel, Seth Saumya, Jain Shrishti, Pant Vasudev, Parikh Jolly, Chugh Nupur, Puri Yugnanda

机构信息

Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi, India.

Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi, India.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108590. doi: 10.1016/j.cmpb.2025.108590. Epub 2025 Jan 6.

Abstract

BACKGROUND

Anxiety is a psycho-physiological condition associated with an individual's mental state. Long-term anxiety persistence can lead to anxiety disorder, which is the underlying cause of many mental health problems. As such, it is critical to precisely identify anxiety by automated, effective, and user-bias-free ways.

OBJECTIVE

The objective of this study is to develop an innovative emotionally intelligent Haptic system for anxiety detection, which can be used to track and manage people's anxiety.

METHOD

The suggested approach incorporates a haptic feedback mechanism that is based on EEG data and is analysed by machine learning algorithms. This allows users to effectively control their emotional well-being by receiving timely feedback and assessments of their anxiety levels. First, the authors use publicly accessible data to present an experimental study for the categorization of human anxiety.

RESULTS

The ensemble model used for the classification produces results with a 97 % accuracy rate, 0.98 recall, 0.99 precision, and a 0.99 F1 score. Furthermore, self-curated data is subjected to an advanced spike analysis algorithm that identifies signal spikes and then quantifies the level of anxiety.

CONCLUSION

The results obtained demonstrate that haptic stimuli are produced smoothly, offering a comprehensive and innovative method of managing anxiety.

摘要

背景

焦虑是一种与个体心理状态相关的心理生理状况。长期焦虑持续存在会导致焦虑症,而焦虑症是许多心理健康问题的根本原因。因此,通过自动化、有效且无用户偏差的方式精确识别焦虑至关重要。

目的

本研究的目的是开发一种创新的用于焦虑检测的情感智能触觉系统,该系统可用于跟踪和管理人们的焦虑。

方法

所建议的方法包含一种基于脑电图(EEG)数据并通过机器学习算法进行分析的触觉反馈机制。这使得用户能够通过接收关于其焦虑水平的及时反馈和评估来有效控制自己的情绪健康。首先,作者使用公开可用的数据进行了一项关于人类焦虑分类的实验研究。

结果

用于分类的集成模型产生的结果准确率为97%,召回率为0.98,精确率为0.99,F1分数为0.99。此外,对自行整理的数据应用了一种先进的尖峰分析算法,该算法可识别信号尖峰,然后量化焦虑水平。

结论

所获得的结果表明,触觉刺激能够顺利产生,提供了一种全面且创新的焦虑管理方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验