Mouazen Badr, Benali Ayoub, Chebchoub Nouh Taha, Abdelwahed El Hassan, De Marco Giovanni
LINP2 Laboratory, Paris Nanterre University, 92000 Nanterre, France.
LISI Laboratory, Computer Science Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco.
Sensors (Basel). 2025 Mar 14;25(6):1827. doi: 10.3390/s25061827.
Emotion detection using electroencephalogram (EEG) signals is a rapidly evolving field with significant applications in mental health diagnostics, affective computing, and human-computer interaction. However, existing approaches often face challenges related to accuracy, interpretability, and real-time feasibility. This study leverages the DEAP dataset to explore and evaluate various machine learning and deep learning techniques for emotion recognition, aiming to address these challenges. To ensure reproducibility, we have made our code publicly available. Extensive experimentation was conducted using K-Nearest Neighbors (KNN), Support Vector Machines (SVMs), Decision Tree (DT), Random Forest (RF), Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Units (GRUs), Convolutional Neural Networks (CNNs), autoencoders, and transformers. Our hybrid approach achieved a peak accuracy of 85-95%, demonstrating the potential of advanced neural architectures in decoding emotional states from EEG signals. While this accuracy is slightly lower than some state-of-the-art methods, our approach offers advantages in computational efficiency and real-time applicability, making it suitable for practical deployment. Furthermore, we employed SHapley Additive exPlanations (SHAP) to enhance model interpretability, offering deeper insights into the contribution of individual features to classification decisions. A comparative analysis with existing methods highlights the novelty and advantages of our approach, particularly in terms of accuracy, interpretability, and computational efficiency. A key contribution of this study is the development of a real-time emotion detection system, which enables instantaneous classification of emotional states from EEG signals. We provide a detailed analysis of its computational efficiency and compare it with existing methods, demonstrating its feasibility for real-world applications. Our findings highlight the effectiveness of hybrid deep learning models in improving accuracy, interpretability, and real-time processing capabilities. These contributions have significant implications for applications in neurofeedback, mental health monitoring, and affective computing. Future work will focus on expanding the dataset, testing the system on a larger and more diverse participant pool, and further optimizing the system for broader clinical and industrial applications.
利用脑电图(EEG)信号进行情感检测是一个快速发展的领域,在心理健康诊断、情感计算和人机交互方面有重要应用。然而,现有方法常常面临与准确性、可解释性和实时可行性相关的挑战。本研究利用DEAP数据集来探索和评估用于情感识别的各种机器学习和深度学习技术,旨在应对这些挑战。为确保可重复性,我们已将代码公开。使用K近邻(KNN)、支持向量机(SVM)、决策树(DT)、随机森林(RF)、双向长短期记忆(BiLSTM)、门控循环单元(GRU)、卷积神经网络(CNN)、自动编码器和变压器进行了广泛实验。我们的混合方法达到了85 - 95%的峰值准确率,证明了先进神经架构在从EEG信号中解码情感状态方面的潜力。虽然这个准确率略低于一些最先进的方法,但我们的方法在计算效率和实时适用性方面具有优势,使其适合实际部署。此外,我们采用SHapley值加法解释(SHAP)来增强模型的可解释性,更深入地了解各个特征对分类决策的贡献。与现有方法的比较分析突出了我们方法的新颖性和优势,特别是在准确性、可解释性和计算效率方面。本研究的一个关键贡献是开发了一个实时情感检测系统,该系统能够从EEG信号中即时分类情感状态。我们对其计算效率进行了详细分析,并与现有方法进行了比较,证明了其在实际应用中的可行性。我们的研究结果突出了混合深度学习模型在提高准确性、可解释性和实时处理能力方面的有效性。这些贡献对神经反馈、心理健康监测和情感计算中的应用具有重要意义。未来的工作将集中在扩大数据集、在更大且更多样化的参与者群体上测试系统,以及进一步优化系统以用于更广泛的临床和工业应用。