Suppr超能文献

人类长寿和阿尔茨海默病相关变异通过小胶质细胞和少突胶质细胞基因网络发挥作用。

Human longevity and Alzheimer's disease variants act via microglia and oligodendrocyte gene networks.

作者信息

Graham Andrew C, Bellou Eftychia, Harwood Janet C, Yaman Umran, Celikag Meral, Magusali Naciye, Rambarack Naiomi, Botia Juan A, Sala Frigerio Carlo, Hardy John, Escott-Price Valentina, Salih Dervis A

机构信息

UK Dementia Research Institute at University College London, London WC1E 6BT, UK.

UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.

出版信息

Brain. 2025 Mar 6;148(3):969-984. doi: 10.1093/brain/awae339.

Abstract

Ageing underlies functional decline of the brain and is the primary risk factor for several neurodegenerative conditions, including Alzheimer's disease (AD). However, the molecular mechanisms that cause functional decline of the brain during ageing, and how these contribute to AD pathogenesis, are not well understood. The objective of this study was to identify biological processes that are altered during ageing in the hippocampus and that modify Ad risk and lifespan, and then to identify putative gene drivers of these programmes. We integrated common human genetic variation associated with human lifespan or Ad from genome-wide association studies with co-expression transcriptome networks altered with age in the mouse and human hippocampus. Our work confirmed that genetic variation associated with Ad was enriched in gene networks expressed by microglia responding to ageing and revealed that they were also enriched in an oligodendrocytic gene network. Compellingly, longevity-associated genetic variation was enriched in a gene network expressed by homeostatic microglia whose expression declined with age. The genes driving this enrichment include CASP8 and STAT3, highlighting a potential role for these longevity-associated genes in the homeostatic functions of innate immune cells, and these genes might drive 'inflammageing'. Thus, we observed that gene variants contributing to ageing and AD balance different aspects of microglial and oligodendrocytic function. Furthermore, we also highlight putative Ad risk genes, such as LAPTM5, ITGAM and LILRB4, whose association with Ad falls below genome-wide significance but show strong co-expression with known Ad risk genes in these networks. Indeed, five of the putative risk genes highlighted by our analysis, ANKH, GRN, PLEKHA1, SNX1 and UNC5CL, have subsequently been identified as genome-wide significant risk genes in a subsequent genome-wide association study with larger sample size, validating our analysis. This work identifies new genes that influence ageing and AD pathogenesis, and highlights the importance of microglia and oligodendrocytes in the resilience of the brain against ageing and AD pathogenesis. Our findings have implications for developing markers indicating the physiological age of the brain and new targets for therapeutic intervention.

摘要

衰老构成大脑功能衰退的基础,并且是包括阿尔茨海默病(AD)在内的几种神经退行性疾病的主要风险因素。然而,导致衰老过程中大脑功能衰退的分子机制,以及这些机制如何促成AD的发病机制,目前尚未完全明确。本研究的目的是确定在海马体衰老过程中发生改变、影响AD风险和寿命的生物学过程,然后确定这些程序的假定基因驱动因素。我们将全基因组关联研究中与人类寿命或AD相关的常见人类遗传变异,与小鼠和人类海马体中随年龄变化的共表达转录组网络进行整合。我们的研究证实,与AD相关的遗传变异在对衰老作出反应的小胶质细胞表达的基因网络中富集,并且显示它们也在少突胶质细胞基因网络中富集。引人注目的是,与长寿相关的遗传变异在稳态小胶质细胞表达的基因网络中富集,而该网络的表达随年龄下降。驱动这种富集的基因包括CASP8和STAT3,突出了这些与长寿相关的基因在先天免疫细胞稳态功能中的潜在作用,并且这些基因可能驱动“炎症衰老”。因此,我们观察到促成衰老和AD的基因变异平衡了小胶质细胞和少突胶质细胞功能的不同方面。此外,我们还强调了假定的AD风险基因,如LAPTM5、ITGAM和LILRB4,它们与AD的关联低于全基因组显著性水平,但在这些网络中与已知的AD风险基因显示出强烈的共表达。事实上,我们分析中突出的五个假定风险基因ANKH、GRN、PLEKHA1、SNX1和UNC5CL,随后在一项样本量更大的后续全基因组关联研究中被确定为全基因组显著性风险基因,验证了我们的分析。这项工作确定了影响衰老和AD发病机制的新基因,并突出了小胶质细胞和少突胶质细胞在大脑抵抗衰老和AD发病机制的弹性中的重要性。我们的发现对于开发指示大脑生理年龄的标志物以及治疗干预的新靶点具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5503/11884759/abd30483e061/awae339f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验