Suppr超能文献

人工智能模型可能有助于预测T1期结直肠癌患者的淋巴结转移情况。

Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer.

作者信息

Baek Ji Eun, Yi Hahn, Hong Seung Wook, Song Subin, Lee Ji Young, Hwang Sung Wook, Park Sang Hyoung, Yang Dong-Hoon, Ye Byong Duk, Myung Seung-Jae, Yang Suk-Kyun, Kim Namkug, Byeon Jeong-Sik

机构信息

Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Department of Gastroenterology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea.

出版信息

Gut Liver. 2025 Jan 15;19(1):69-76. doi: 10.5009/gnl240273. Epub 2025 Jan 8.

Abstract

BACKGROUND/AIMS: Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.

METHODS

We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.

RESULTS

Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).

CONCLUSIONS

AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.

摘要

背景/目的:对T1期结直肠癌(CRC)进行内镜切除术后,淋巴结转移(LNM)预测不准确可能导致不必要的手术。我们旨在验证人工智能(AI)模型对T1期CRC患者LNM预测的有效性。

方法

我们分析了接受T1期CRC根治性手术患者的临床数据、实验室检查结果、病理报告和内镜检查结果。我们使用四种算法开发了预测LNM的AI模型:正则化逻辑回归分类器(RLRC)、随机森林分类器(RFC)、CatBoost分类器(CBC)和投票分类器(VC)。纳入四个组织学因素和四个内镜检查结果来开发AI模型。根据日本结直肠癌学会指南,测量受试者工作特征曲线下面积(AUROC)以区分AI模型性能。

结果

在1386例T1期CRC患者中,173例(12.5%)发生LNM。RLRC、RFC、CBC和VC模型预测LNM的AUROC值显著高于日本结直肠癌学会指南建议的0.525(分别为0.673、0.640、0.679和0.677;与RLRC相比,p<0.001;与RFC相比,p=0.001;与CBC相比,p<0.001;与VC相比,p<0.001)。T1期结肠癌与T1期直肠癌的AUROC值相似(0.718对0.615,p=0.700)。初始内镜切除组和初始手术组之间的AUROC值也相似(0.581对0.746,p=0.845)。

结论

基于内镜检查结果和病理特征训练的AI模型在预测T1期CRC患者的LNM方面表现良好,无论肿瘤位置和初始治疗方法如何。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414d/11736321/328f0a232753/gnl-19-1-69-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验