Department of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
Department of R&D Center, Arontier Co., Ltd, Seoul, Republic of Korea.
J Gastroenterol. 2022 Sep;57(9):654-666. doi: 10.1007/s00535-022-01894-4. Epub 2022 Jul 8.
When endoscopically resected specimens of early colorectal cancer (CRC) show high-risk features, surgery should be performed based on current guidelines because of the high-risk of lymph node metastasis (LNM). The aim of this study was to determine the utility of an artificial intelligence (AI) with deep learning (DL) of hematoxylin and eosin (H&E)-stained endoscopic resection specimens without manual-pixel-level annotation for predicting LNM in T1 CRC. In addition, we assessed AI performance for patients with only submucosal (SM) invasion depth of 1000 to 2000 μm known to be difficult to predict LNM in clinical practice.
H&E-stained whole slide images (WSIs) were scanned for endoscopic resection specimens of 400 patients who underwent endoscopic treatment for newly diagnosed T1 CRC with additional surgery. The area under the curve (AUC) of the receiver operating characteristic curve was used to determine the accuracy of AI for predicting LNM with a fivefold cross-validation in the training set and in a held-out test set.
We developed an AI model using a two-step attention-based DL approach without clinical features (AUC, 0.764). Incorporating clinical features into the model did not improve its prediction accuracy for LNM. Our model reduced unnecessary additional surgery by 15.1% more than using the current guidelines (67.4% vs. 82.5%). In patients with SM invasion depth of 1000 to 2000 μm, the AI avoided 16.1% of unnecessary additional surgery than using the JSCCR guidelines.
Our study is the first to show that AI trained with DL of H&E-stained WSIs has the potential to predict LNM in T1 CRC using only endoscopically resected specimens with conventional histologic risk factors.
当经内镜切除的早期结直肠癌(CRC)标本显示高危特征时,应根据当前指南进行手术,因为淋巴结转移(LNM)的风险较高。本研究旨在确定一种基于深度学习(DL)的人工智能(AI)在未进行手动像素级注释的情况下,对 T1 CRC 预测 LNM 的效用。此外,我们评估了 AI 对仅黏膜下(SM)侵犯深度为 1000 至 2000μm 的患者的性能,因为这些患者在临床实践中 LNM 难以预测。
对 400 例接受内镜治疗的新诊断 T1 CRC 患者的内镜切除标本进行 H&E 染色全切片图像(WSI)扫描,并进行额外手术。使用五重交叉验证在训练集和验证集中确定 AI 预测 LNM 的准确性,通过受试者工作特征曲线下面积(AUC)来评估。
我们使用两步基于注意力的 DL 方法开发了一种 AI 模型,不包含临床特征(AUC,0.764)。将临床特征纳入模型并没有提高其对 LNM 的预测准确性。我们的模型比使用当前指南减少了 15.1%的不必要的额外手术(67.4%对 82.5%)。在 SM 侵犯深度为 1000 至 2000μm 的患者中,AI 避免了 16.1%的不必要的额外手术,比使用 JSCCR 指南更优。
本研究首次表明,使用 H&E 染色 WSI 的 DL 训练的 AI 仅使用常规组织学危险因素的内镜切除标本,有可能预测 T1 CRC 的 LNM。