Vincze Zsófia Éva, Nagy Lilien, Kelemen Kata, Cavalcante Bianca Gólzio Navarro, Gede Noémi, Hegyi Péter, Bányai Dorottya, Köles László, Márton Krisztina
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Preclinical Dentistry, Semmelweis University, Budapest, Hungary.
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary.
Dent Mater. 2025 Apr;41(4):366-382. doi: 10.1016/j.dental.2024.12.017. Epub 2025 Jan 8.
This systematic review and network meta-analysis aimed to compare different PMMA (polymethyl methacrylate) complete denture base manufacturing techniques by evaluating their mechanical properties. The objective was to determine which method-compression molding, injection molding, milling, or 3D printing-offers the best performance.
In vitro studies investigating mechanical properties of PMMA denture base resins.
Four electronic databases such as PubMed, Embase, Web of Science, and the Cochrane Library were screened for English language articles. Two independent researchers selected studies, extracted data, assessed risk of bias, and evaluated evidence certainty.
A total of 17152 articles were found by electronic databases. Finally, 63 studies were analyzed, using random-effects model for network meta-analysis. The outcomes investigated were flexural strength, flexural modulus, surface roughness, impact strength, and Vickers hardness. Milling consistently ranked first or second across outcomes, excelling in flexural strength, modulus, and surface roughness. In contrast, 3D-printed denture bases demonstrated the lowest mechanical performance, highlighting the limitations of this technique at present.
Milling is generally recommended for PMMA denture bases due to its superior mechanical properties across most outcomes, supporting its use in clinical settings. However, while promising, 3D-printed PMMA denture bases require further improvement to meet clinical performance standards.
本系统评价和网状Meta分析旨在通过评估不同聚甲基丙烯酸甲酯(PMMA)全口义齿基托制作技术的力学性能,比较这些技术。目的是确定哪种方法——模压成型、注塑成型、铣削或3D打印——性能最佳。
关于PMMA义齿基托树脂力学性能的体外研究。
检索了四个电子数据库,如PubMed、Embase、科学网和考克兰图书馆,以查找英文文章。两名独立研究人员选择研究、提取数据、评估偏倚风险并评价证据确定性。
电子数据库共检索到17152篇文章。最后,分析了63项研究,采用随机效应模型进行网状Meta分析。研究的结果包括弯曲强度、弯曲模量、表面粗糙度、冲击强度和维氏硬度。铣削在各项结果中始终排名第一或第二,在弯曲强度、模量和表面粗糙度方面表现出色。相比之下,3D打印义齿基托的力学性能最低,凸显了该技术目前的局限性。
由于铣削在大多数结果中具有优异的力学性能,因此通常推荐用于制作PMMA义齿基托,支持其在临床环境中的应用。然而,尽管3D打印PMMA义齿基托前景广阔,但仍需进一步改进以达到临床性能标准。