Cano Pau, Musulen Eva, Gil Debora
Comp. Sci. Dep, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, 08193, Catalunya, Spain.
Computer Vision Center, Campus UAB, Cerdanyola del Vallès, 08193, Catalunya, Spain.
Int J Comput Assist Radiol Surg. 2025 Apr;20(4):765-773. doi: 10.1007/s11548-024-03313-w. Epub 2025 Jan 8.
This work addresses the detection of Helicobacter pylori (H. pylori) in histological images with immunohistochemical staining. This analysis is a time-demanding task, currently done by an expert pathologist that visually inspects the samples. Given the effort required to localize the pathogen in images, a limited number of annotations might be available in an initial setting. Our goal is to design an approach that, using a limited set of annotations, is capable of obtaining results good enough to be used as a support tool.
We propose to use autoencoders to learn the latent patterns of healthy patches and formulate a specific measure of the reconstruction error of the image in HSV space. ROC analysis is used to set the optimal threshold of this measure and the percentage of positive patches in a sample that determines the presence of H. pylori.
Our method has been tested on an own database of 245 whole slide images (WSI) having 117 cases without H. pylori and different density of the bacteria in the remaining ones. The database has 1211 annotated patches, with only 163 positive patches. This dataset of positive annotations was used to train a baseline thresholding and an SVM using the features of a pre-trained RedNet-18 and ViT models. A 10-fold cross-validation shows that our method has better performance with 91% accuracy, 86% sensitivity, 96% specificity and 0.97 AUC in the diagnosis of H. pylori .
Unlike classification approaches, our shallow autoencoder with threshold adaptation for the detection of anomalous staining is able to achieve competitive results with a limited set of annotated data. This initial approach is good enough to be used as a guide for fast annotation of infected patches.
本研究致力于通过免疫组织化学染色在组织学图像中检测幽门螺杆菌(H. pylori)。此分析是一项耗时的任务,目前由专家病理学家通过目视检查样本完成。鉴于在图像中定位病原体所需的工作量,在初始设置中可能仅有有限数量的注释可用。我们的目标是设计一种方法,该方法使用有限的注释集,能够获得足以用作辅助工具的结果。
我们建议使用自动编码器来学习健康切片的潜在模式,并在HSV空间中制定图像重建误差的特定度量。ROC分析用于设置该度量的最佳阈值以及确定样本中幽门螺杆菌存在的阳性切片百分比。
我们的方法已在一个包含245张全切片图像(WSI)的自建数据库上进行测试,其中117例无幽门螺杆菌,其余病例中细菌密度不同。该数据库有1211个注释切片,其中只有163个阳性切片。这个阳性注释数据集用于训练基线阈值法以及使用预训练的RedNet - 18和ViT模型的特征的支持向量机(SVM)。十折交叉验证表明,我们的方法在幽门螺杆菌诊断中具有更好的性能,准确率为91%,灵敏度为86%,特异性为96%,AUC为0.97。
与分类方法不同,我们用于检测异常染色的具有阈值自适应功能的浅层自动编码器能够在有限的注释数据集上取得有竞争力的结果。这种初步方法足以用作感染切片快速注释的指南。