Huang Chun-Rong, Chung Pau-Choo, Sheu Bor-Shyang, Kuo Hsiu-Jui, Popper Mikulá
Institute of Information Science, Academia Sinica, Taipei 11523, Taiwan, ROC.
IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):523-31. doi: 10.1109/TITB.2007.913128.
This study presents a computer-aided diagnosis system using sequential forward floating selection (SFFS) with support vector machine (SVM) to diagnose gastric histology of Helicobacter pylori (H. pylori) from endoscopic images. To achieve this goal, candidate image features associated with clinical symptoms are extracted from endoscopic images. With these candidate features, the SFFS method is applied to select feature subsets, which perform the best classification results under SVM with respect to different histological features. By using the classifiers obtained from the feature subsets, a new diagnosis system is implemented to provide physicians with H. pylori -related histological results from endoscopic images.
本研究提出了一种计算机辅助诊断系统,该系统使用带有支持向量机(SVM)的顺序前向浮动选择(SFFS)算法,从内镜图像中诊断幽门螺杆菌(H. pylori)的胃部组织学情况。为实现这一目标,从内镜图像中提取与临床症状相关的候选图像特征。利用这些候选特征,应用SFFS方法选择特征子集,这些特征子集在SVM下针对不同组织学特征能产生最佳分类结果。通过使用从特征子集获得的分类器,实现了一个新的诊断系统,以便为医生提供来自内镜图像的与幽门螺杆菌相关的组织学诊断结果。