Shichijo Satoki, Endo Yuma, Aoyama Kazuharu, Takeuchi Yoshinori, Ozawa Tsuyoshi, Takiyama Hirotoshi, Matsuo Keigo, Fujishiro Mitsuhiro, Ishihara Soichiro, Ishihara Ryu, Tada Tomohiro
a Department of Gastrointestinal Oncology , Osaka International Cancer Institute , Osaka , Japan.
b AI Medical Service , Tokyo , Japan.
Scand J Gastroenterol. 2019 Feb;54(2):158-163. doi: 10.1080/00365521.2019.1577486. Epub 2019 Mar 17.
We recently reported the role of artificial intelligence in the diagnosis of Helicobacter pylori (H. pylori) gastritis on the basis of endoscopic images. However, that study included only H. pylori-positive and -negative patients, excluding patients after H. pylori-eradication. In this study, we constructed a convolutional neural network (CNN) and evaluated its ability to ascertain all H. pylori infection statuses.
A deep CNN was pre-trained and fine-tuned on a dataset of 98,564 endoscopic images from 5236 patients (742 H. pylori-positive, 3649 -negative, and 845 -eradicated). A separate test data set (23,699 images from 847 patients; 70 positive, 493 negative, and 284 eradicated) was evaluated by the CNN.
The trained CNN outputs a continuous number between 0 and 1 as the probability index for H. pylori infection status per image (Pp, H. pylori-positive; Pn, negative; Pe, eradicated). The most probable (largest number) of the three infectious statuses was selected as the 'CNN diagnosis'. Among 23,699 images, the CNN diagnosed 418 images as positive, 23,034 as negative, and 247 as eradicated. Because of the large number of H. pylori negative findings, the probability of H. pylori-negative was artificially re-defined as Pn -0.9, after which 80% (465/582) of negative diagnoses were accurate, 84% (147/174) eradicated, and 48% (44/91) positive. The time needed to diagnose 23,699 images was 261 seconds.
We used a novel algorithm to construct a CNN for diagnosing H. pylori infection status on the basis of endoscopic images very quickly.
H. pylori: Helicobacter pylori; CNN: convolutional neural network; AI: artificial intelligence; EGD: esophagogastroduodenoscopies.
我们最近报道了人工智能在基于内镜图像诊断幽门螺杆菌(H. pylori)胃炎中的作用。然而,该研究仅纳入了H. pylori阳性和阴性患者,排除了H. pylori根除后的患者。在本研究中,我们构建了一个卷积神经网络(CNN),并评估了其确定所有H. pylori感染状态的能力。
在来自5236例患者的98564张内镜图像数据集(742例H. pylori阳性、3649例阴性和845例根除)上对一个深度CNN进行预训练和微调。通过该CNN对一个单独的测试数据集(来自847例患者的23699张图像;70例阳性、493例阴性和284例根除)进行评估。
经过训练的CNN输出一个介于0和1之间的连续数字,作为每张图像H. pylori感染状态的概率指数(Pp,H. pylori阳性;Pn,阴性;Pe,根除)。三种感染状态中最可能的(最大数字)被选为“CNN诊断”。在23699张图像中,CNN诊断出418张为阳性,23034张为阴性,247张为根除。由于H. pylori阴性结果数量众多,将H. pylori阴性的概率人为重新定义为Pn - 0.9,在此之后,80%(465/582)的阴性诊断准确,84%(147/174)的根除诊断准确,48%(44/91)的阳性诊断准确。诊断23699张图像所需时间为261秒。
我们使用一种新算法构建了一个CNN,能够非常快速地基于内镜图像诊断H. pylori感染状态。
H. pylori:幽门螺杆菌;CNN:卷积神经网络;AI:人工智能;EGD:食管胃十二指肠镜检查