Suppr超能文献

DIKOApp:一种基于人工智能的膝骨关节炎诊断系统。

DIKOApp: An AI-Based Diagnostic System for Knee Osteoarthritis.

作者信息

Phan Trung Hieu, Nguyen Trung Tuan, Nguyen Thanh Dat, Pham Huu Hung, Ta Gia Khang, Tran Minh Triet, Quan Thanh Tho

机构信息

Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam.

Global Softwares Corporation (GSOFT CORPORATION), Ho Chi Minh City, Vietnam.

出版信息

J Imaging Inform Med. 2025 Jan 8. doi: 10.1007/s10278-024-01383-5.

Abstract

The diagnosis of knee osteoarthritis is challenging due to its complex nature and various contributing factors. With the advancement of artificial intelligence (AI) technology, some computer vision-based methods have been developed to address this task. However, when applied in practice, these methods encounter numerous challenges. Training a powerful AI model to effectively analyze a wide range of medical images is crucial. On the other hand, collecting and accurately labeling a significant number of medical images in the real world is necessary. Specifically, when dealing with knee images from specific regions like Vietnam, certain unique biological characteristics make it difficult to utilize and trust previously published studies. To effectively address these challenges, we introduce DIKOApp, an automatic diagnostic application for knee osteoarthritis based on the DIKO framework, trained on a dataset specifically built for the Vietnamese population. This framework is designed with two stages that leverage medical knowledge and computer vision techniques. The DIKO framework leverages efficient data sampling and augmentation framework to handle medical images in the real world more effectively. When evaluated using a real-world knee image dataset from Vietnamese individuals, the DIKO model demonstrates impressive performance with an accuracy of 89.34% and an F1-score of 0.88. By utilizing the capabilities of the DIKO framework, DIKOApp shows practical and promising real-world potential, enabling doctors and healthcare service providers to diagnose pathological conditions more accurately while requiring less diagnostic time, thereby improving the lives of patients.

摘要

膝关节骨关节炎的诊断具有挑战性,因为其性质复杂且有多种促成因素。随着人工智能(AI)技术的进步,已经开发了一些基于计算机视觉的方法来解决这一任务。然而,在实际应用中,这些方法面临众多挑战。训练一个强大的AI模型以有效分析各种医学图像至关重要。另一方面,在现实世界中收集并准确标注大量医学图像是必要的。具体而言,在处理来自越南等特定地区的膝关节图像时,某些独特的生物学特征使得难以利用和信赖先前发表的研究。为了有效应对这些挑战,我们引入了DIKOApp,这是一款基于DIKO框架的膝关节骨关节炎自动诊断应用程序,它在专门为越南人群构建的数据集上进行训练。该框架设计为两个阶段,利用医学知识和计算机视觉技术。DIKO框架利用高效的数据采样和增强框架,更有效地处理现实世界中的医学图像。当使用来自越南个体的现实世界膝关节图像数据集进行评估时,DIKO模型表现出色,准确率为89.34%,F1分数为0.88。通过利用DIKO框架的能力,DIKOApp展现出实际且有前景的现实世界潜力,使医生和医疗服务提供者能够更准确地诊断病理状况,同时所需诊断时间更少,从而改善患者的生活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验