Hanassab Simon, Nelson Scott M, Akbarov Artur, Yeung Arthur C, Hramyka Artsiom, Alhamwi Toulin, Salim Rehan, Comninos Alexander N, Trew Geoffrey H, Kelsey Tom W, Heinis Thomas, Dhillo Waljit S, Abbara Ali
Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK.
Department of Computing, Imperial College London, London, UK.
Nat Commun. 2025 Jan 8;16(1):296. doi: 10.1038/s41467-024-55301-y.
Infertility affects one-in-six couples, often necessitating in vitro fertilization treatment (IVF). IVF generates complex data, which can challenge the utilization of the full richness of data during decision-making, leading to reliance on simple 'rules-of-thumb'. Machine learning techniques are well-suited to analyzing complex data to provide data-driven recommendations to improve decision-making. In this multi-center study (n = 19,082 treatment-naive female patients), including 11 European IVF centers, we harnessed explainable artificial intelligence to identify follicle sizes that contribute most to relevant downstream clinical outcomes. We found that intermediately-sized follicles were most important to the number of mature oocytes subsequently retrieved. Maximizing this proportion of follicles by the end of ovarian stimulation was associated with improved live birth rates. Our data suggests that larger mean follicle sizes, especially those >18 mm, were associated with premature progesterone elevation by the end of ovarian stimulation and a negative impact on live birth rates with fresh embryo transfer. These data highlight the potential of computer technologies to aid in the personalization of IVF to optimize clinical outcomes pending future prospective validation.
不孕不育影响着六分之一的夫妇,通常需要进行体外受精治疗(IVF)。IVF会产生复杂的数据,这可能会在决策过程中对充分利用丰富的数据提出挑战,导致人们依赖简单的“经验法则”。机器学习技术非常适合分析复杂数据,以提供数据驱动的建议来改善决策。在这项多中心研究(n = 19,082名未接受过治疗的女性患者)中,包括11个欧洲IVF中心,我们利用可解释人工智能来识别对相关下游临床结果贡献最大的卵泡大小。我们发现,中等大小的卵泡对随后获取的成熟卵母细胞数量最为重要。在卵巢刺激结束时最大化这一比例的卵泡与提高活产率相关。我们的数据表明,较大的平均卵泡大小,尤其是那些>18毫米的卵泡,与卵巢刺激结束时孕酮过早升高以及对新鲜胚胎移植的活产率产生负面影响有关。这些数据凸显了计算机技术在辅助IVF个性化以优化临床结果方面的潜力,有待未来进行前瞻性验证。