Suppr超能文献

可解释人工智能用于识别在辅助受孕过程中优化临床结果的卵泡。

Explainable artificial intelligence to identify follicles that optimize clinical outcomes during assisted conception.

作者信息

Hanassab Simon, Nelson Scott M, Akbarov Artur, Yeung Arthur C, Hramyka Artsiom, Alhamwi Toulin, Salim Rehan, Comninos Alexander N, Trew Geoffrey H, Kelsey Tom W, Heinis Thomas, Dhillo Waljit S, Abbara Ali

机构信息

Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK.

Department of Computing, Imperial College London, London, UK.

出版信息

Nat Commun. 2025 Jan 8;16(1):296. doi: 10.1038/s41467-024-55301-y.

Abstract

Infertility affects one-in-six couples, often necessitating in vitro fertilization treatment (IVF). IVF generates complex data, which can challenge the utilization of the full richness of data during decision-making, leading to reliance on simple 'rules-of-thumb'. Machine learning techniques are well-suited to analyzing complex data to provide data-driven recommendations to improve decision-making. In this multi-center study (n = 19,082 treatment-naive female patients), including 11 European IVF centers, we harnessed explainable artificial intelligence to identify follicle sizes that contribute most to relevant downstream clinical outcomes. We found that intermediately-sized follicles were most important to the number of mature oocytes subsequently retrieved. Maximizing this proportion of follicles by the end of ovarian stimulation was associated with improved live birth rates. Our data suggests that larger mean follicle sizes, especially those >18 mm, were associated with premature progesterone elevation by the end of ovarian stimulation and a negative impact on live birth rates with fresh embryo transfer. These data highlight the potential of computer technologies to aid in the personalization of IVF to optimize clinical outcomes pending future prospective validation.

摘要

不孕不育影响着六分之一的夫妇,通常需要进行体外受精治疗(IVF)。IVF会产生复杂的数据,这可能会在决策过程中对充分利用丰富的数据提出挑战,导致人们依赖简单的“经验法则”。机器学习技术非常适合分析复杂数据,以提供数据驱动的建议来改善决策。在这项多中心研究(n = 19,082名未接受过治疗的女性患者)中,包括11个欧洲IVF中心,我们利用可解释人工智能来识别对相关下游临床结果贡献最大的卵泡大小。我们发现,中等大小的卵泡对随后获取的成熟卵母细胞数量最为重要。在卵巢刺激结束时最大化这一比例的卵泡与提高活产率相关。我们的数据表明,较大的平均卵泡大小,尤其是那些>18毫米的卵泡,与卵巢刺激结束时孕酮过早升高以及对新鲜胚胎移植的活产率产生负面影响有关。这些数据凸显了计算机技术在辅助IVF个性化以优化临床结果方面的潜力,有待未来进行前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cd/11711444/3236697a6373/41467_2024_55301_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验