Orouji Seyedmehdi, Taschereau-Dumouchel Vincent, Cortese Aurelio, Odegaard Brian, Cushing Cody, Cherkaoui Mouslim, Kawato Mitsuo, Lau Hakwan, Peters Megan A K
Department of Cognitive Sciences, University of California, 2201 Social & Behavioral Sciences Gateway, Irvine, CA, 92697, USA.
Department of Psychiatry and Addictology, Université de Montréal, Montreal, H3C 3J7, Canada.
Sci Rep. 2025 Jan 8;15(1):1365. doi: 10.1038/s41598-024-83867-6.
In human neuroscience, machine learning can help reveal lower-dimensional neural representations relevant to subjects' behavior. However, state-of-the-art models typically require large datasets to train, and so are prone to overfitting on human neuroimaging data that often possess few samples but many input dimensions. Here, we capitalized on the fact that the features we seek in human neuroscience are precisely those relevant to subjects' behavior rather than noise or other irrelevant factors. We thus developed a Task-Relevant Autoencoder via Classifier Enhancement (TRACE) designed to identify behaviorally-relevant target neural patterns. We benchmarked TRACE against a standard autoencoder and other models for two severely truncated machine learning datasets (to match the data typically available in functional magnetic resonance imaging [fMRI] data for an individual subject), then evaluated all models on fMRI data from 59 subjects who observed animals and objects. TRACE outperformed alternative models nearly unilaterally, showing up to 12% increased classification accuracy and up to 56% improvement in discovering "cleaner", task-relevant representations. These results showcase TRACE's potential for a wide variety of data related to human behavior.
在人类神经科学领域,机器学习有助于揭示与受试者行为相关的低维神经表征。然而,当前的先进模型通常需要大量数据集来进行训练,因此在人类神经成像数据上容易出现过拟合现象,这类数据往往样本较少但输入维度众多。在此,我们利用了这样一个事实:在人类神经科学中我们所寻求的特征恰恰是那些与受试者行为相关的特征,而非噪声或其他无关因素。因此,我们开发了一种通过分类器增强的任务相关自动编码器(TRACE),旨在识别与行为相关的目标神经模式。我们将TRACE与标准自动编码器及其他模型在两个严重截断的机器学习数据集上进行了基准测试(以匹配个体受试者功能磁共振成像[fMRI]数据中通常可用的数据),然后在59名观察动物和物体的受试者的fMRI数据上对所有模型进行了评估。TRACE几乎在所有方面都优于其他模型,分类准确率提高了多达12%,在发现“更清晰”的、与任务相关的表征方面提高了多达56%。这些结果展示了TRACE在与人类行为相关的各种数据方面的潜力。