Hasan Fardous, Tantawi Maha El, Haque Farzana, Foláyan Moréniké Oluwátóyìn, Virtanen Jorma I
Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
BMC Oral Health. 2025 Jan 8;25(1):49. doi: 10.1186/s12903-025-05419-2.
In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifying crucial health behaviours within mother-child pairs.
For the analysis, we utilized a representative sample of 724 mothers with children under six years in Bangladesh. The study utilized both clinical and survey data. ECC was assessed using ICDAS II criteria in the clinical examinations. Recursive Feature Elimination (RFE) and Random Forest (RF) was applied to identify the optimal subsets of features. Random forest classifier (RFC), extreme gradient boosting (XGBoost), support vector machine (SVM), adaptive boosting (AdaBoost), and multi-layer perceptron (MLP) models were used to identify the best fitted model as the predictor of ECC. SHAP and MDG-MDA plots were visualized for model interpretability and identify significant predictors.
The RFC model identified 10 features as the most relevant for ECC prediction obtained by RFE feature selection method. The features were: plaque score, age of child, mother's education, number of siblings, age of mother, consumption of sweet, tooth cleaning tools, child's tooth brushing frequency, helping child brushing, and use of F-toothpaste. The final ML model achieved an AUC-ROC score (0.77), accuracy (0.72), sensitivity (0.80) and F1 score (0.73) in the test set. Of the prediction model, dental plaque was the strongest predictor of ECC (MDG: 0.08, MDA: 0.10).
Our final ML model, integrating 10 key features, has the potential to predict ECC effectively in children under five years. Additional research is needed for validation and optimization across various groups.
在过去几年中,人工智能(AI)有助于改善包括牙科在内的医疗保健。本研究的目的是通过识别母婴对中的关键健康行为,开发一种用于预测幼儿龋齿(ECC)的机器学习(ML)模型。
为了进行分析,我们利用了孟加拉国724名有6岁以下子女的母亲的代表性样本。该研究使用了临床和调查数据。在临床检查中使用国际龋病检测和评估系统(ICDAS)II标准评估ECC。应用递归特征消除(RFE)和随机森林(RF)来识别特征的最佳子集。使用随机森林分类器(RFC)、极端梯度提升(XGBoost)、支持向量机(SVM)、自适应提升(AdaBoost)和多层感知器(MLP)模型来确定作为ECC预测器的最佳拟合模型。使用SHAP和MDG-MDA图来实现模型可解释性并识别重要预测因素。
RFC模型将通过RFE特征选择方法获得的10个特征确定为与ECC预测最相关的特征。这些特征是:菌斑评分、儿童年龄、母亲教育程度、兄弟姐妹数量、母亲年龄、甜食摄入量、牙齿清洁工具、儿童刷牙频率、帮助儿童刷牙以及含氟牙膏的使用。最终的ML模型在测试集中的AUC-ROC得分(0.77)、准确率(0.72)、灵敏度(0.80)和F1得分(0.73)。在预测模型中,牙菌斑是ECC的最强预测因素(MDG:0.08,MDA:0.10)。
我们整合了10个关键特征的最终ML模型有潜力有效预测5岁以下儿童的ECC。需要进行更多研究以在不同群体中进行验证和优化。