Suppr超能文献

常温区域灌注下心脏死亡后器官捐献中的机器学习算法:移植器官存活预测模型

Machine Learning Algorithms in Controlled Donation After Circulatory Death Under Normothermic Regional Perfusion: A Graft Survival Prediction Model.

作者信息

Calleja Rafael, Rivera Marcos, Guijo-Rubio David, Hessheimer Amelia J, de la Rosa Gloria, Gastaca Mikel, Otero Alejandra, Ramírez Pablo, Boscà-Robledo Andrea, Santoyo Julio, Marín Gómez Luis Miguel, Villar Del Moral Jesús, Fundora Yiliam, Lladó Laura, Loinaz Carmelo, Jiménez-Garrido Manuel C, Rodríguez-Laíz Gonzalo, López-Baena José Á, Charco Ramón, Varo Evaristo, Rotellar Fernando, Alonso Ayaya, Rodríguez-Sanjuan Juan C, Blanco Gerardo, Nuño Javier, Pacheco David, Coll Elisabeth, Domínguez-Gil Beatriz, Fondevila Constantino, Ayllón María Dolores, Durán Manuel, Ciria Ruben, Gutiérrez Pedro A, Gómez-Orellana Antonio, Hervás-Martínez César, Briceño Javier

机构信息

Hepatobiliary Surgery and Liver Transplantation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, University of Córdoba, Córdoba, Spain.

Department of Computational Sciences and Numerical Analysis, University of Córdoba, Córdoba, Spain.

出版信息

Transplantation. 2025 Jul 1;109(7):e362-e370. doi: 10.1097/TP.0000000000005312. Epub 2025 Jan 9.

Abstract

BACKGROUND

Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based classifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease score in a donor-recipient (D-R) matching system was developed.

METHODS

This retrospective multicenter cohort study used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was developed using the best model obtained.

RESULTS

Logistic regression yielded the best performance at 3 mo (area under the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP risk score.

CONCLUSIONS

The satisfactory performance of the proposed score within the study population suggests a significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology may be explored in other regions.

摘要

背景

已经开发了几种评分系统来对心脏死亡后器官捐献(cDCD)中移植物丢失的风险进行分层。然而,它们在西班牙人群中的表现并不理想,在西班牙,大多数cDCD肝脏是通过常温区域灌注(NRP)获取的。因此,我们探讨了不同的基于机器学习的分类器作为移植物存活预测模型的作用。开发了一种在供体 - 受体(D - R)匹配系统中与终末期肝病评分模型相结合的风险分层评分。

方法

这项回顾性多中心队列研究使用了539对通过NRP获取的cDCD肝脏的D - R对,包括20个供体、受体和NRP变量。评估了以下基于机器学习的分类器:逻辑回归、岭分类器、支持向量分类器、多层感知器和随机森林。终点指标是3个月和12个月的移植物存活率。使用获得的最佳模型制定了3个月和12个月的风险评分。

结果

逻辑回归在3个月时表现最佳(受试者工作特征曲线下面积 = 0.82),在12个月时(受试者工作特征曲线下面积 = 0.83)。基于当前的终末期肝病评分模型和cDCD - NRP风险评分提出了一种D - R匹配系统。

结论

所提出的评分在研究人群中的令人满意的表现表明其在支持cDCD - NRP移植物肝脏分配方面具有巨大潜力。外部验证具有挑战性,但这种方法可能在其他地区进行探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7711/12180694/d8993beaa2c5/tpa-109-e362-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验