Tanghetti Emil A, Sierra Rafael, Estes Michael, Eck Aubrey, Intintoli Alfred, Hofvander Henrik, Cohen Joel L, Friedmann Daniel P, Goldman Mitchel P, Pomerantz Hyemin, Wang Jordan V, Geronemus Roy G, Anderson R Rox, Sakamoto Fernanda H
Center for Dermatology and Laser Surgery, Sacramento, California, USA.
Accure Acne Inc., Boulder, Colorado, USA.
Lasers Surg Med. 2025 Mar;57(3):236-251. doi: 10.1002/lsm.23872. Epub 2025 Jan 8.
This work highlights the methods used to develop a multi-pulse 1726 nm laser system combined with bulk air-cooling for selective sebaceous gland (SG) photothermolysis using thermal imaging and software algorithms. This approach enables treating to a desired tissue temperature and depth to provide a safe, effective, reproducible, and durable treatment of acne.
We designed and built a 1726 nm laser system with a 40 W maximum power output, a highly controlled air-cooling device, and a thermal camera in the handpiece, which permits real-time temperature monitoring of the epidermis. IRB-approved safety and efficacy trials demonstrated SG damage at depth, resulting in safe, efficacious, and durable clinical outcomes. Bioheat transfer and light transport modeling confirmed that the pulsing protocols could produce therapeutic temperatures at various SG depths, while protecting the epidermis and dermis with bulk air-cooling. Similarly, we employed clinical observations and photothermal modeling to identify pain mitigation opportunities while maintaining therapeutic efficacy. Biopsies were subsequently taken for histological evaluation.
Clinical and histological data, confirmed with modeling, demonstrated that multi-pulse laser delivery with bulk air-cooling selectively increased SG temperature compared to surrounding dermis and at depths unachievable by a single pulse. Subjects showed an average 71% ILC reduction at 3 months posttreatment. We identified two different pulsing protocols with similar selective photothermolysis (SP) of the SG with very different pain responses. Thus, changing the pulsing protocols allowed for pain mitigation and eliminated the need for injectable anesthetic. Histology confirmed the selective damaging of the SG at depth and the preservation of the surrounding dermis and the epidermis.
The multi-pulse 1726 nm laser with bulk air-cooling, thermal monitoring, treat-to-temperature (and depth) control, and a unique pulsing protocol, is capable of selectively damaging SGs at depth without damage to the surrounding dermis or the epidermis. The system offers two different protocols that were developed with different levels of discomfort allowing for two different methods for pain mitigation (injectable vs. topical anesthesia).
本研究重点介绍了一种多脉冲1726纳米激光系统的开发方法,该系统结合了风冷技术,利用热成像和软件算法实现选择性皮脂腺(SG)光热解。这种方法能够将组织温度和深度控制在理想水平,从而为痤疮提供安全、有效、可重复且持久的治疗。
我们设计并构建了一个最大功率输出为40瓦的1726纳米激光系统,配备高度可控的风冷装置以及置于手持部件中的热成像仪,可实时监测表皮温度。经机构审查委员会批准的安全性和有效性试验证明,该系统可对深层皮脂腺造成损伤,从而实现安全、有效且持久的临床效果。生物热传递和光传输模型证实,脉冲方案能够在不同的皮脂腺深度产生治疗温度,同时通过风冷保护表皮和真皮。同样,我们利用临床观察和光热模型,在保持治疗效果的同时确定减轻疼痛的机会。随后进行活检以进行组织学评估。
临床和组织学数据经模型验证表明,与周围真皮相比,采用风冷的多脉冲激光照射可选择性地提高皮脂腺温度,且能达到单脉冲无法实现的深度。受试者在治疗后3个月时平均炎症性皮损计数降低了71%。我们确定了两种不同的脉冲方案,它们对皮脂腺具有相似的选择性光热解(SP)效果,但疼痛反应截然不同。因此,改变脉冲方案可减轻疼痛,无需注射麻醉剂。组织学证实,深层皮脂腺受到选择性损伤,周围真皮和表皮得以保留。
具有风冷、热监测、治疗温度(和深度)控制以及独特脉冲方案的多脉冲1726纳米激光,能够在不损伤周围真皮或表皮的情况下选择性地损伤深层皮脂腺。该系统提供了两种不同的方案,针对不同程度的不适感进行开发,从而实现两种不同的减轻疼痛方法(注射麻醉与局部麻醉)。