Suppr超能文献

用于先进智能窗应用的GDQDs掺杂WO电致变色薄膜中的双波段调制与卓越循环稳定性的革新

Revolutionizing Dual-Band Modulation and Superior Cycling Stability in GDQDs-Doped WO Electrochromic Films for Advanced Smart Window Applications.

作者信息

Wu Wenjun, Tian Maofei, Tang Yanbang, Song Chengyu, Zheng Rongzong, Guo Yang, Jia Chunyang

机构信息

College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.

State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

出版信息

Small. 2025 Feb;21(6):e2407708. doi: 10.1002/smll.202407708. Epub 2025 Jan 8.

Abstract

Dual-band tungsten oxide (WO) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO possesses a coral-like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity. Electrochemical tests confirm that this unique structure provides abundant multi-active sites and efficient electrolyte ion channels, which facilitate the ion insertion/extraction to promote the electrochromic process. The GDQDs/WO films exhabit impressive electrochromic performance, with rapid swithing (12.6/8.4 s for bleaching/coloration), high coloring efficiency (104.78 cmC at 1100 nm), and independent dual-band transmittance changes (ΔT, with ΔT  = 64.54%, ΔT  = 83.52% and ΔT  = 79.80%), and exceptional stability (remained 95.1% modulation range after 20 000 cycles). The unique characteristics of GDQDs lead to the formation of a built-in electric field via charge transfer, which optimizes and enriches the energy level structure of WO. This solution not only advances the development of electrochromic technology, but also opens the door for future innovative applications of smart materials.

摘要

双波段氧化钨(WO)电致变色薄膜受到广泛研究,但在复杂的制造工艺和有限的循环稳定性方面仍存在挑战。本文提出了一种制备具有六方晶体结构的石墨炔量子点(GDQDs)掺杂WO薄膜的新方法。结构表征表明,由于形态和结晶度的协同调制,GDQDs/WO具有珊瑚状的疏松结构和高结晶度。电化学测试证实,这种独特的结构提供了丰富的多活性位点和高效的电解质离子通道,有利于离子的插入/提取,从而促进电致变色过程。GDQDs/WO薄膜表现出令人印象深刻的电致变色性能,具有快速切换(漂白/着色时间分别为12.6/8.4秒)、高着色效率(在1100纳米处为104.78 cmC)、独立的双波段透过率变化(ΔT,其中ΔT = 64.54%,ΔT = 83.52%,ΔT = 79.80%)以及出色的稳定性(在20000次循环后仍保持95.1%的调制范围)。GDQDs的独特特性通过电荷转移导致形成内建电场,优化并丰富了WO的能级结构。该解决方案不仅推动了电致变色技术的发展,也为智能材料未来的创新应用打开了大门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验