Suppr超能文献

用于在超低过电位下将硝酸盐电还原为氨的界面水调控

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

作者信息

Wan Yuchi, Pei Maojun, Tang Yixiang, Liu Yao, Yan Wei, Zhang Jiujun, Lv Ruitao

机构信息

Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Adv Mater. 2025 Feb;37(8):e2417696. doi: 10.1002/adma.202417696. Epub 2025 Jan 8.

Abstract

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials. The well-designed Ru─Ni(OH) electrocatalyst shows a remarkable energy efficiency of 44.6% at +0.1 V versus RHE and a nearly 100% Faradaic efficiency for NH synthesis at 0 V versus RHE. In situ characterizations and theoretical calculations indicate that Ni(OH) can regulate the interfacial HO structure with a promoted HO dissociation process and contribute to the spontaneous hydrogen spillover process for boosting NO electroreduction to NH at Ru sites. Furthermore, the assembled rechargeable Zn-NO /ethanol battery system exhibits an outstanding long-term cycling stability during the charge-discharge tests with the production of high-value-added ammonium acetate, showing great potential for simultaneously achieving nitrate removal, energy conversion, and chemical synthesis. This work can not only provide a guidance for interfacial HO regulation in extensive hydrogenation reactions but also inspire the design of a novel hybrid flow battery with multiple functions.

摘要

就全球氮平衡而言,硝酸盐电还原对于实现废水处理和氨生产具有广阔前景。然而,由于加氢过程受阻,硝酸盐电还原过程中需要克服高过电位,导致能耗巨大。在此,我们开发了一种氢氧化物调控策略,以优化界面羟基行为,从而在超低过电位下加速硝酸盐加氢转化为氨的过程。精心设计的Ru─Ni(OH)电催化剂在相对于可逆氢电极(RHE)为+0.1 V时显示出44.6%的显著能量效率,在相对于RHE为0 V时对氨合成的法拉第效率接近100%。原位表征和理论计算表明,Ni(OH)可以通过促进羟基解离过程来调节界面羟基结构,并有助于自发的氢溢流过程,从而在Ru位点促进硝酸盐电还原为氨。此外,组装的可充电Zn-NO/乙醇电池系统在充放电测试过程中表现出出色的长期循环稳定性,并产生高附加值的醋酸铵,在同时实现硝酸盐去除、能量转换和化学合成方面显示出巨大潜力。这项工作不仅可以为广泛的加氢反应中的界面羟基调控提供指导,还可以激发新型多功能混合液流电池的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验