Hariram Muruganandham, Pal Pankaj K, Chandran Anusree S, Nair Manikantan R, Kumar Manoj, Ganesha Mukhesh K, Singh Ashutosh K, Dasgupta Basundhara, Goel Saurav, Roy Tribeni, Menezes Prashanth W, Sarkar Debasish
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan, 333031, India.
Small. 2025 Feb;21(6):e2410408. doi: 10.1002/smll.202410408. Epub 2025 Jan 9.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode. Nevertheless, its high Zn-ion diffusion barrier because of limited interlayer spacing substantiates the need for interlayer modifications. Here, N-doped carbon quantum dots (N-CQDs) are used to modify the interlayers of MoS, resulting in increased interlayer spacing (0.8 nm) and rich interlayer dislocations. MoS@N-CQDs attain a high specific capacity (258 mAh g at 0.1 A g), good cycle life (94.5% after 2000 cycles), and an ultrahigh diffusion coefficient (10 to 10 cm s), much better than pristine MoS. Ex situ Raman studies at charge/discharge states reveal that the N-CQDs-induced interlayer expansion and dislocations can reversibly accommodate the volume strain created by Zn-ion diffusion within MoS layers. Atomistic insight into the interlayer dislocation-induced Zn-ion storage of MoS is unveiled by molecular dynamic simulations. Finally, rocking-chair ZIB with MoS@N-CQDs anode and a ZnMnO cathode is realized, which achieved a maximum energy density of 120.3 Wh kg and excellent cyclic stability with 97% retention after 15 000 cycles.
对储能领域可持续性和成本效益的日益关注推动了可充电锌离子电池(ZIB)的兴起。然而,寻找有限循环寿命锌负极的替代品是一项重大挑战。二硫化钼(MoS)作为一种插入型二维层状材料,作为ZIB负极已显示出有前景的特性。然而,由于层间距有限,其较高的锌离子扩散势垒凸显了层间改性的必要性。在此,氮掺杂碳量子点(N-CQDs)被用于修饰MoS的层间,导致层间距增加(0.8 nm)和丰富的层间位错。MoS@N-CQDs具有高比容量(在0.1 A g下为258 mAh g)、良好的循环寿命(2000次循环后为94.5%)和超高扩散系数(10至10 cm s),远优于原始MoS。在充电/放电状态下的非原位拉曼研究表明,N-CQDs诱导的层间膨胀和位错可以可逆地适应MoS层内锌离子扩散产生的体积应变。通过分子动力学模拟揭示了层间位错诱导的MoS锌离子存储的原子尺度见解。最后,实现了具有MoS@N-CQDs负极和ZnMnO正极的摇椅式ZIB,其最大能量密度为120.3 Wh kg,并且在15000次循环后具有97%的保留率的优异循环稳定性。