Yao Zeying, Zhang Wei, Ren Xiaochuan, Yin Yaru, Zhao Yuanxin, Ren Zhiguo, Sun Yuanhe, Lei Qi, Wang Juan, Wang Lihua, Ji Te, Huai Ping, Wen Wen, Li Xiaolong, Zhu Daming, Tai Renzhong
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
ACS Nano. 2022 Aug 23;16(8):12095-12106. doi: 10.1021/acsnano.2c02330. Epub 2022 Aug 1.
Engineering multifunctional superstructure cathodes to conquer the critical issue of sluggish kinetics and large volume changes associated with divalent Zn-ion intercalation reactions is highly desirable for boosting practical Zn-ion battery applications. Herein, it is demonstrated that a MoS/CHN (CTAB) superstructure can be rationally designed as a stable and high-rate cathode. Incorporation of soft organic CTAB into a rigid MoS host forming the superlattice structure not only effectively initiates and smooths Zn transport paths by significantly expanding the MoS interlayer spacing (1.0 nm) but also endows structural stability to accommodate Zn storage with expansion along the MoS in-plane, while synchronous shrinkage along the superlattice interlayer achieves volume self-regulation of the whole cathode, as evidenced by synchrotron X-ray diffraction and substantial characterizations. Consequently, the optimized superlattice cathode delivers high-rate performance, long-term cycling stability (∼92.8% capacity retention at 10 A g after 2100 cycles), and favorable flexibility in a pouch cell. Moreover, a decent areal capacity (0.87 mAh cm) is achieved even after a 10-fold increase of loading mass (∼11.5 mg cm), which is of great significance for practical applications. This work highlights the design of multifunctional superlattice electrodes for high-performance aqueous batteries.
设计多功能超结构阴极以克服与二价锌离子嵌入反应相关的动力学迟缓及体积变化大的关键问题,对于推动实用型锌离子电池的应用极为必要。在此,证明了MoS/CHN(CTAB)超结构可被合理设计为一种稳定且高倍率的阴极。将柔软的有机CTAB掺入刚性的MoS主体中形成超晶格结构,不仅通过显著扩大MoS层间距(1.0 nm)有效启动并平滑了锌传输路径,还赋予结构稳定性以适应沿MoS平面内膨胀的锌存储,同时沿超晶格层间的同步收缩实现了整个阴极的体积自调节,同步辐射X射线衍射和大量表征证明了这一点。因此,优化后的超晶格阴极展现出高倍率性能、长期循环稳定性(在10 A g下2100次循环后容量保持率约为92.8%)以及在软包电池中的良好柔韧性。此外,即使在负载质量增加10倍(约11.5 mg cm)后仍实现了可观的面积容量(0.87 mAh cm) ,这对实际应用具有重要意义。这项工作突出了用于高性能水系电池的多功能超晶格电极的设计。