Yuldasheva Nazokat N, Abdullaev Ikram I, Khudoyberganov Oybek I, Gandjaeva Lola A, Kodamboev Pirnazar K, Samandarov Elyor Sh, Normamatov Adkhamjon S, Ruzmetov Abror Kh, Yakubov Yuldosh Y, Balakrishnan C, Ibragimov Bakhtiyar T, Ibragimov Aziz B
Khorezm Mamun Academy, Uzbekistan Academy of Sciences, Khiva, Uzbekistan.
Department of Biology, Urgench State University, Urgench, Uzbekistan.
Turk J Chem. 2024 Oct 18;48(6):809-820. doi: 10.55730/1300-0527.3700. eCollection 2024.
The cocrystal (or supramolecular complex) between the Cu(II) complex of salicylic acid and uncoordinated piracetam has been synthesized. Its structure is characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, and X-ray crystallography. Spectroscopic methods confirm the formation of the metal complex, while X-ray crystallography establishes the molecular and crystal structure of the obtained compound. The Cu(II) complex of salicylic acid (complex molecule) is a symmetric binuclear compound in the form of a "Chinese lantern" and contains 4 salicylic acid and 2 water molecules. It interacts with uncoordinated piracetam through a complicated system of hydrogen bonds. However, according to Hirshfeld surface analysis, the contribution of the O•••H/H•••O contacts is only 24.9%, while H•••H and H•••C/C•••H contacts account for 67.5%, indicating that intermolecular interactions are mainly hydrophobic. In silico (molecular docking) studies of the cocrystal, the complex molecule, and piracetam's antifungal, antibacterial, and antiviral activities confirm that the complex molecule demonstrates enhanced biological activities; practically, the inactive piracetam improved all tested types of bioactivities through cocrystal formation. For example, the binding energy in the case of anti-COVID activity is improved from -10.34 to -11.40 kcal/mol. Thus, cocrystal formation based on metal complexes and inactive organic compounds may be promising in drug design.
已合成了水杨酸铜(II)配合物与未配位的吡拉西坦之间的共晶体(或超分子复合物)。通过元素分析、傅里叶变换红外光谱(FT-IR)、紫外可见光谱和X射线晶体学对其结构进行了表征。光谱方法证实了金属配合物的形成,而X射线晶体学确定了所得化合物的分子和晶体结构。水杨酸铜(II)配合物(复合分子)是一种呈“中国灯笼”形式的对称双核化合物,包含4个水杨酸分子和2个水分子。它通过复杂的氢键体系与未配位的吡拉西坦相互作用。然而,根据 Hirshfeld 表面分析,O∙∙∙H/H∙∙∙O 接触的贡献仅为24.9%,而 H∙∙∙H 和 H∙∙∙C/C∙∙∙H 接触占67.5%,这表明分子间相互作用主要是疏水作用。对共晶体、复合分子和吡拉西坦的抗真菌、抗菌和抗病毒活性进行的计算机模拟(分子对接)研究证实,复合分子表现出增强的生物活性;实际上,无活性的吡拉西坦通过形成共晶体提高了所有测试类型的生物活性。例如,在抗新冠病毒活性方面,结合能从 -10.34 提高到 -11.40 kcal/mol。因此,基于金属配合物和无活性有机化合物形成共晶体在药物设计中可能具有前景。