Suppr超能文献

中风患者动态网络的重组及其预测运动恢复的潜力。

Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.

作者信息

Pang Xiaomin, Huang Longquan, He Huahang, Xie Shaojun, Huang Jinfeng, Ge Xiaorong, Zheng Tianqing, Zhao Liren, Xu Ning, Zhang Zhao

机构信息

Department of Rehabilitation, The Fifth Affiliated hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning, China.

Department of Radiology, The Fifth Affiliated hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning, China.

出版信息

Neural Plast. 2024 Dec 31;2024:9932927. doi: 10.1155/np/9932927. eCollection 2024.

Abstract

The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.

摘要

对脑功能网络动力学的研究为理解中风后网络重组提供了一种很有前景的方法。本研究旨在探索与中风患者运动恢复相关的动态网络配置,并使用多层网络分析评估其预测潜力。收集了发病2周内的亚急性中风患者以及匹配的健康对照(HC)的静息态功能磁共振成像数据。采用组独立成分分析和滑动窗口方法构建动态功能网络。应用多层网络模型来量化动态网络中各个节点、子网和全局网络的切换率。相关性分析评估了切换率与运动功能恢复之间的关系,而线性回归模型则评估了全局网络切换率对运动恢复结果的预测潜力。与HC相比,中风患者特定脑区的切换率显著增加,包括内侧额回、中央前回、顶下小叶、前扣带回、额上回和中央后回。此外,在额顶网络、默认模式网络、小脑网络以及全局网络中也观察到切换率升高。这些增加的切换率与基线Fugl-Meyer评估(FMA)评分以及中风后90天FMA评分的变化呈正相关。重要的是,全局网络的切换率成为中风患者运动恢复的一个重要预测指标。中风患者动态网络配置的重组揭示了对运动恢复机制的关键见解。这些发现表明,动态网络重组的指标,特别是全局网络切换率,可能为运动恢复提供一个可靠的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0397/11707127/46a68fe1475e/NP2024-9932927.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验