文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的原发性进行性多发性硬化症疾病进展预测

Machine learning-based prediction of disease progression in primary progressive multiple sclerosis.

作者信息

Gurevich Michael, Zilkha-Falb Rina, Sherman Jia, Usdin Maxime, Raposo Catarina, Craveiro Licinio, Sonis Polina, Magalashvili David, Menascu Shay, Dolev Mark, Achiron Anat

机构信息

Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel.

Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel.

出版信息

Brain Commun. 2025 Jan 8;7(1):fcae427. doi: 10.1093/braincomms/fcae427. eCollection 2025.


DOI:10.1093/braincomms/fcae427
PMID:39781330
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11707605/
Abstract

Primary progressive multiple sclerosis (PPMS) affects 10-15% of multiple sclerosis patients and presents significant variability in the rate of disability progression. Identifying key biological features and patients at higher risk for fast progression is crucial to develop and optimize treatment strategies. Peripheral blood cell transcriptome has the potential to provide valuable information to predict patients' outcomes. In this study, we utilized a machine learning framework applied to the baseline blood transcriptional profiles and brain MRI radiological enumerations to develop prognostic models. These models aim to identify PPMS patients likely to experience significant disease progression and who could benefit from early treatment intervention. RNA-sequence analysis was performed on total RNA extracted from peripheral blood mononuclear cells of PPMS patients in the placebo arm of the ORATORIO clinical trial (NCT01412333), using Illumina NovaSeq S2. Cross-validation algorithms from Partek Genome Suite (www.partek.com) were applied to predict disability progression and brain volume loss over 120 weeks. For disability progression prediction, we analysed blood RNA samples from 135 PPMS patients (61 females and 74 males) with a mean ± standard error age of 44.0 ± 0.7 years, disease duration of 5.9 ± 0.32 years and a median baseline Expanded Disability Status Scale (EDSS) score of 4.3 (range 3.5-6.5). Over the 120-week study, 39.3% (53/135) of patients reached the disability progression end-point, with an average EDSS score increase of 1.3 ± 0.16. For brain volume loss prediction, blood RNA samples from 94 PPMS patients (41 females and 53 males), mean ± standard error age of 43.7 ± 0.7 years and a median baseline EDSS of 4.0 (range 3.0-6.5) were used. Sixty-seven per cent (63/94) experienced significant brain volume loss. For the prediction of disability progression, we developed a two-level procedure. In the first level, a 10-gene predictor achieved a classification accuracy of 70.9 ± 4.5% in identifying patients reaching the disability end-point within 120 weeks. In the second level, a four-gene classifier distinguished between fast and slow disability progression with a 506-day cut-off, achieving 74.1 ± 5.2% accuracy. For brain volume loss prediction, a 12-gene classifier reached an accuracy of 70.2 ± 6.7%, which improved to 74.1 ± 5.2% when combined with baseline brain MRI measurements. In conclusion, our study demonstrates that blood transcriptome data, alone or combined with baseline brain MRI metrics, can effectively predict disability progression and brain volume loss in PPMS patients.

摘要

原发性进行性多发性硬化症(PPMS)影响10%至15%的多发性硬化症患者,其残疾进展速度存在显著差异。识别关键生物学特征以及进展较快风险较高的患者对于制定和优化治疗策略至关重要。外周血细胞转录组有潜力提供有价值的信息来预测患者的预后。在本研究中,我们利用机器学习框架,将其应用于基线血液转录谱和脑MRI放射学计数,以开发预后模型。这些模型旨在识别可能经历显著疾病进展且能从早期治疗干预中获益的PPMS患者。对ORATORIO临床试验(NCT01412333)安慰剂组中PPMS患者外周血单核细胞提取的总RNA进行了RNA序列分析,使用的是Illumina NovaSeq S2。应用Partek Genome Suite(www.partek.com)的交叉验证算法来预测120周内的残疾进展和脑容量损失。对于残疾进展预测,我们分析了135例PPMS患者(61名女性和74名男性)的血液RNA样本,其平均年龄±标准误为44.0±0.7岁,病程为5.9±0.32年,基线扩展残疾状态量表(EDSS)评分中位数为4.3(范围3.5 - 6.5)。在为期120周的研究中,39.3%(53/135)的患者达到了残疾进展终点,EDSS评分平均增加1.3±0.16。对于脑容量损失预测,使用了94例PPMS患者(41名女性和53名男性)的血液RNA样本,平均年龄±标准误为43.7±0.7岁,基线EDSS中位数为4.0(范围3.0 - 6.5)。67%(63/94)的患者经历了显著的脑容量损失。对于残疾进展的预测,我们开发了一个两级程序。在第一级,一个10基因预测器在识别120周内达到残疾终点的患者时,分类准确率为70.9±4.5%。在第二级,一个4基因分类器以506天为截止值区分快速和缓慢残疾进展,准确率达到74.1±5.2%。对于脑容量损失预测,一个12基因分类器的准确率为70.2±6.7%,与基线脑MRI测量结果相结合时提高到74.1±5.2%。总之,我们的研究表明,血液转录组数据单独或与基线脑MRI指标相结合,可以有效预测PPMS患者的残疾进展和脑容量损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/f135a7a304a7/fcae427f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/0a3331607a14/fcae427_ga.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/06d00241c2f7/fcae427f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/7bfbcf983b46/fcae427f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/f135a7a304a7/fcae427f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/0a3331607a14/fcae427_ga.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/06d00241c2f7/fcae427f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/7bfbcf983b46/fcae427f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c53/11707605/f135a7a304a7/fcae427f3.jpg

相似文献

[1]
Machine learning-based prediction of disease progression in primary progressive multiple sclerosis.

Brain Commun. 2025-1-8

[2]
Brain atrophy and physical disability in primary progressive multiple sclerosis: A volumetric study.

Neuroradiol J. 2015-6

[3]
Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial.

Lancet Neurol. 2020-10-29

[4]
A data-driven model of disability progression in progressive multiple sclerosis.

Brain Commun. 2024-12-3

[5]
Disease-Modifying Treatments and Time to Loss of Ambulatory Function in Patients With Primary Progressive Multiple Sclerosis.

JAMA Neurol. 2022-9-1

[6]
Mitoxantrone: a review of its use in multiple sclerosis.

CNS Drugs. 2004

[7]
Blood Neurofilament Light in Progressive Multiple Sclerosis: Post Hoc Analysis of 2 Randomized Controlled Trials.

Neurology. 2022-5-24

[8]
Composite Confirmed Disability Worsening/Progression Is a Useful Clinical Endpoint for Multiple Sclerosis Clinical Trials.

Neurology. 2025-5-27

[9]
Effectiveness of Ocrelizumab in Primary Progressive Multiple Sclerosis: a Multicenter, Retrospective, Real-world Study (OPPORTUNITY).

Neurotherapeutics. 2023-10

[10]
Intravenous immunoglobulin in primary and secondary chronic progressive multiple sclerosis: a randomized placebo controlled multicentre study.

Mult Scler. 2007-11

引用本文的文献

[1]
Semi-Supervised Learning for Predicting Multiple Sclerosis.

J Pers Med. 2025-4-24

本文引用的文献

[1]
Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor.

Antioxidants (Basel). 2023-5-3

[2]
Deficiency in the omega-3 lysolipid transporter Mfsd2a leads to aberrant oligodendrocyte lineage development and hypomyelination.

J Clin Invest. 2023-6-15

[3]
Deciphering the Properties and Functions of Glycoproteins Using Quantitative Proteomics.

J Proteome Res. 2023-6-2

[4]
Faster progression to multiple sclerosis disability is linked to neuronal pathways associated with neurodegeneration: An ethnicity study.

PLoS One. 2023

[5]
Real-world evaluation of ocrelizumab in multiple sclerosis: A systematic review.

Ann Clin Transl Neurol. 2023-3

[6]
The Inflammatory Gene of the Entorhinal Cortex as an Early Diagnostic Target for Alzheimer's Disease.

Biomedicines. 2023-1-12

[7]
Brain volume is associated with cognition in MS.

Nat Rev Neurol. 2022-11

[8]
, a coronary artery disease risk gene, mediates endothelial dysfunction.

Front Immunol. 2022

[9]
A rare cause of microcephaly, thin corpus callosum and refractory epilepsy due to a novel SLC1A4 gene mutation.

Clin Neurol Neurosurg. 2022-7

[10]
Brain charts for the human lifespan.

Nature. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索