Suppr超能文献

用于预测多发性硬化症的半监督学习

Semi-Supervised Learning for Predicting Multiple Sclerosis.

作者信息

Kotsiantis Sotiris, Melagraki Georgia, Verykios Vassilios, Sakagianni Aikaterini, Matsoukas John

机构信息

Department of Mathematics, University of Patras, 26504 Patras, Greece.

Department of Military Sciences, Hellenic Army Academy, 16673 Athens, Greece.

出版信息

J Pers Med. 2025 Apr 24;15(5):167. doi: 10.3390/jpm15050167.

Abstract

: Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system with a propensity to inflict severe neurological disability. Accurate and early prediction of MS progression is extremely crucial for its management and treatment. : In this paper, we compare a number of self-labeled semi-supervised learning methods used to predict MS from labeled and unlabeled medical data. Specifically, we compare the performance of Self-Training, SETRED, Co-Training, Co-Training by Committee, Democratic Co-Learning, RASCO, RelRASCO, CoForest, and TriTraining in different labeled ratios. The data contain clinical, imaging, and demographic features, allowing for a detailed comparison of each method's predictive ability. : The experimental results demonstrate that several self-labeling semi-supervised learning (SSL) algorithms perform competitively in the task of Multiple Sclerosis (MS) prediction, even when trained on as little as 30-40% of the labeled data. Notably, Co-Training by Committee, CoForest, and TriTraining consistently deliver high performance across all metrics (accuracy, F1-score, and MCC).

摘要

多发性硬化症(MS)是一种中枢神经系统的慢性自身免疫性疾病,容易导致严重的神经功能残疾。准确且早期预测MS的进展对于其管理和治疗极为关键。:在本文中,我们比较了多种用于从标记和未标记医学数据预测MS的自标记半监督学习方法。具体而言,我们比较了自我训练、SETRED、协同训练、委员会协同训练、民主协同学习、RASCO、RelRASCO、协同森林和TriTraining在不同标记比例下的性能。数据包含临床、影像和人口统计学特征,从而能够对每种方法的预测能力进行详细比较。:实验结果表明,几种自标记半监督学习(SSL)算法在多发性硬化症(MS)预测任务中表现出竞争力,即使在仅30 - 40%的标记数据上进行训练。值得注意的是,委员会协同训练、协同森林和TriTraining在所有指标(准确率、F1分数和MCC)上始终表现出高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/64d13ba6f84d/jpm-15-00167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验