文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测多发性硬化症的半监督学习

Semi-Supervised Learning for Predicting Multiple Sclerosis.

作者信息

Kotsiantis Sotiris, Melagraki Georgia, Verykios Vassilios, Sakagianni Aikaterini, Matsoukas John

机构信息

Department of Mathematics, University of Patras, 26504 Patras, Greece.

Department of Military Sciences, Hellenic Army Academy, 16673 Athens, Greece.

出版信息

J Pers Med. 2025 Apr 24;15(5):167. doi: 10.3390/jpm15050167.


DOI:10.3390/jpm15050167
PMID:40423039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12113346/
Abstract

: Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system with a propensity to inflict severe neurological disability. Accurate and early prediction of MS progression is extremely crucial for its management and treatment. : In this paper, we compare a number of self-labeled semi-supervised learning methods used to predict MS from labeled and unlabeled medical data. Specifically, we compare the performance of Self-Training, SETRED, Co-Training, Co-Training by Committee, Democratic Co-Learning, RASCO, RelRASCO, CoForest, and TriTraining in different labeled ratios. The data contain clinical, imaging, and demographic features, allowing for a detailed comparison of each method's predictive ability. : The experimental results demonstrate that several self-labeling semi-supervised learning (SSL) algorithms perform competitively in the task of Multiple Sclerosis (MS) prediction, even when trained on as little as 30-40% of the labeled data. Notably, Co-Training by Committee, CoForest, and TriTraining consistently deliver high performance across all metrics (accuracy, F1-score, and MCC).

摘要

多发性硬化症(MS)是一种中枢神经系统的慢性自身免疫性疾病,容易导致严重的神经功能残疾。准确且早期预测MS的进展对于其管理和治疗极为关键。:在本文中,我们比较了多种用于从标记和未标记医学数据预测MS的自标记半监督学习方法。具体而言,我们比较了自我训练、SETRED、协同训练、委员会协同训练、民主协同学习、RASCO、RelRASCO、协同森林和TriTraining在不同标记比例下的性能。数据包含临床、影像和人口统计学特征,从而能够对每种方法的预测能力进行详细比较。:实验结果表明,几种自标记半监督学习(SSL)算法在多发性硬化症(MS)预测任务中表现出竞争力,即使在仅30 - 40%的标记数据上进行训练。值得注意的是,委员会协同训练、协同森林和TriTraining在所有指标(准确率、F1分数和MCC)上始终表现出高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/f865df636911/jpm-15-00167-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/64d13ba6f84d/jpm-15-00167-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/e68f14e98ee7/jpm-15-00167-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/33cb43438d7c/jpm-15-00167-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/f865df636911/jpm-15-00167-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/64d13ba6f84d/jpm-15-00167-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/e68f14e98ee7/jpm-15-00167-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/33cb43438d7c/jpm-15-00167-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda5/12113346/f865df636911/jpm-15-00167-g004.jpg

相似文献

[1]
Semi-Supervised Learning for Predicting Multiple Sclerosis.

J Pers Med. 2025-4-24

[2]
Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors.

BMC Bioinformatics. 2022-6-8

[3]
Semi-supervised abdominal multi-organ segmentation by object-redrawing.

Med Phys. 2024-11

[4]
CPSS: Fusing consistency regularization and pseudo-labeling techniques for semi-supervised deep cardiovascular disease detection using all unlabeled electrocardiograms.

Comput Methods Programs Biomed. 2024-9

[5]
Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management.

J Biomed Inform. 2013-7-8

[6]
Weakly Semi-supervised phenotyping using Electronic Health records.

J Biomed Inform. 2022-10

[7]
SC-SSL: Self-Correcting Collaborative and Contrastive Co-Training Model for Semi-Supervised Medical Image Segmentation.

IEEE Trans Med Imaging. 2024-4

[8]
Semi-supervised learning framework with shape encoding for neonatal ventricular segmentation from 3D ultrasound.

Med Phys. 2024-9

[9]
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.

Med Image Anal. 2023-7

[10]
Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer.

Ann Med Surg (Lond). 2021-1-8

本文引用的文献

[1]
Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review.

R Soc Open Sci. 2025-1-22

[2]
Machine learning-based prediction of disease progression in primary progressive multiple sclerosis.

Brain Commun. 2025-1-8

[3]
Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review.

J Neurol. 2024-10

[4]
Myelin Oligodendrocyte Glycoprotein (MOG)35-55 Mannan Conjugate Induces Human T-Cell Tolerance and Can Be Used as a Personalized Therapy for Multiple Sclerosis.

Int J Mol Sci. 2024-5-31

[5]
Machine Learning Analysis Using RNA Sequencing to Distinguish Neuromyelitis Optica from Multiple Sclerosis and Identify Therapeutic Candidates.

J Mol Diagn. 2024-6

[6]
Interpretable and Intuitive Machine Learning Approaches for Predicting Disability Progression in Relapsing-Remitting Multiple Sclerosis Based on Clinical and Gray Matter Atrophy Indicators.

Acad Radiol. 2024-7

[7]
The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis.

Int J Mol Sci. 2023-12-21

[8]
Predicting disease severity in multiple sclerosis using multimodal data and machine learning.

J Neurol. 2024-3

[9]
Disease Delineation for Multiple Sclerosis, Friedreich Ataxia, and Healthy Controls Using Supervised Machine Learning on Speech Acoustics.

IEEE Trans Neural Syst Rehabil Eng. 2023

[10]
Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis in Mexican Patients: A Prospective Study.

Arch Med Res. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索