Giannakakis Georgios, Usteri Marc Eduard, Bugaev Aram, Ruiz-Ferrando Andrea, Faust Akl Dario, López Núria, Fantasia Serena, Püntener Kurt, Pérez-Ramírez Javier, Mitchell Sharon
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland.
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland.
ACS Catal. 2024 Dec 17;15(1):284-295. doi: 10.1021/acscatal.4c05134. eCollection 2025 Jan 3.
Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings. Yet their use in C-N couplings remains unexplored, and mechanistic insights into amine coupling with aryl halides over solid surfaces that could guide catalyst design are lacking. Here, we demonstrate that palladium atoms coordinated to well-defined heptazinic cavities of graphitic carbon nitride (Pd@CN) deliver practically relevant yields for BH couplings across various aryl halides and amines, exhibiting persistent activity and negligible leaching over several cycles. Notably, Pd@CN shows comparable or superior activity with certain aryl chlorides to bromides, alongside high chemoselectivity for amines over amides. In situ X-ray absorption spectroscopy analyses supported by density functional theory simulations identify the concerted role of the ligand and the CN host in determining the performance, with a Pd(II) nominal oxidation state observed under all coupling conditions. Complementary structural and kinetic studies highlight a distinct reaction mechanism than that typically reported for homogeneous catalysts. These findings offer key insights for designing recyclable SAC for BH coupling, setting the basis for extending the scope toward more complex industrial targets.
布赫瓦尔德-哈特维希(BH)胺化反应对于在众多生物活性分子和精细化学品中合成芳胺基序至关重要。虽然均相钯配合物可以是有效的催化剂,但其高成本和环境影响促使人们寻找替代方法。非均相钯单原子催化剂(SAC)在碳-碳交叉偶联反应中提供了有前景的可回收替代方案。然而,它们在碳-氮偶联反应中的应用仍未被探索,并且缺乏关于胺与芳基卤化物在固体表面上偶联的机理见解,而这些见解可以指导催化剂设计。在这里,我们证明了与石墨相氮化碳明确的七嗪腔配位的钯原子(Pd@CN)在各种芳基卤化物和胺的BH偶联反应中提供了实际相关的产率,在几个循环中表现出持续的活性和可忽略不计的浸出。值得注意的是,Pd@CN与某些芳基氯化物相比,对芳基溴化物具有相当或更高的活性,同时对胺的化学选择性高于酰胺。由密度泛函理论模拟支持的原位X射线吸收光谱分析确定了配体和CN主体在决定性能方面的协同作用,在所有偶联条件下均观察到名义氧化态为Pd(II)。补充的结构和动力学研究突出了一种与通常报道的均相催化剂不同的反应机理。这些发现为设计用于BH偶联的可回收SAC提供了关键见解,为将范围扩展到更复杂的工业目标奠定了基础。