Faust Akl D, Poier D, D'Angelo S C, Araújo T P, Tulus V, Safonova O V, Mitchell S, Marti R, Guillén-Gosálbez G, Pérez-Ramírez J
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland Fribourg Boulevard de Pérolles 80 1700 Fribourg Switzerland
Green Chem. 2022 Jul 6;24(18):6879-6888. doi: 10.1039/d2gc01853e. eCollection 2022 Sep 20.
The Pd-Cu catalysed Sonogashira coupling of terminal alkynes and aryl halides is a cornerstone synthetic strategy for C-C bond formation. Homogeneous organometallic systems conventionally applied are typically not reusable and require efficient downstream Pd removal steps for product purification, making it challenging to fully recover the precious metal. A holistic cradle-to-gate life cycle assessment (LCA) unveils that process footprint can be improved up to two orders of magnitude from repeated catalyst reuse. New classes of heterogeneous catalysts based on isolated metal atoms (single-atom catalysts, SACs) demonstrate promising potential to synergise the benefits of solid and molecular catalysts for efficient Pd utilisation. Here we show that using Pd atoms anchored on nitrogen-doped carbon permits full recovery of the metal and reuse of the catalyst over multiple cycles. A hybrid process using the Pd-SAC with a homogeneous CuI cocatalyst is more effective than a fully heterogeneous analogue based on a bimetallic Pd-Cu SAC, which deactivates severely due to copper leaching. In some scenarios, the LCA-based metrics demonstrate the footprint of the hybrid homogeneous-heterogeneous catalytic process is leaner than the purely homogeneous counterpart already upon single reuse. Combining LCA with experimental evaluation will be a useful guide to the implementation of solid, reusable catalysts for sustainable organic transformations.
钯-铜催化的端基炔烃与芳基卤化物的Sonogashira偶联反应是形成碳-碳键的一项基础合成策略。传统应用的均相有机金属体系通常不可重复使用,并且在产品纯化过程中需要高效的下游钯去除步骤,这使得完全回收贵金属具有挑战性。一项全面的从摇篮到大门的生命周期评估(LCA)表明,通过重复使用催化剂,工艺足迹可以改善多达两个数量级。基于孤立金属原子的新型多相催化剂(单原子催化剂,SACs)显示出协同固体催化剂和分子催化剂的优点以实现高效钯利用的潜力。在此,我们表明,使用锚定在氮掺杂碳上的钯原子能够实现金属的完全回收以及催化剂在多个循环中的重复使用。使用钯单原子催化剂与均相碘化亚铜助催化剂的混合工艺比基于双金属钯-铜单原子催化剂的完全多相类似物更有效,后者由于铜浸出而严重失活。在某些情况下,基于LCA的指标表明,混合的均相-多相催化过程的足迹在单次重复使用时就比纯均相催化过程更小。将LCA与实验评估相结合将为实施用于可持续有机转化的固体、可重复使用催化剂提供有用的指导。